大彤小忆
码龄3年
  • 660,304
    被访问
  • 314
    原创
  • 3,820
    排名
  • 8,092
    粉丝
关注
提问 私信

个人简介:永远不要停下前进的脚步^o^

  • 加入CSDN时间: 2019-03-19
博客简介:

大彤小忆的博客

博客描述:
控制科学与工程专业的硕士,一直走在学习的路上,欢迎大家一起交流^o^~
查看详细资料
  • 7
    领奖
    总分 3,131 当月 139
个人成就
  • 获得712次点赞
  • 内容获得297次评论
  • 获得2,209次收藏
创作历程
  • 3篇
    2022年
  • 240篇
    2021年
  • 73篇
    2020年
  • 12篇
    2019年
成就勋章
TA的专栏
  • 场景分类
    1篇
  • 目标检测
    13篇
  • 计算机网络
    29篇
  • 数据结构
    60篇
  • 遥感图像
    2篇
  • C++
    57篇
  • 算法
    20篇
  • 操作系统
    11篇
  • MySQL
    20篇
  • LeetCode刷题题解
    1篇
  • Git和GitHub
    2篇
  • 计算机视觉
    2篇
  • 机器学习
    26篇
  • 经验分享
    9篇
  • Python
    38篇
  • 软件安装
    11篇
  • 深度学习
    7篇
  • 论文阅读
    11篇
  • 数学建模
    8篇
  • MATLAB GUI
    12篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用数据增强技术对已有样本进行扩充

  当数据集中的样本量较少时,直接将其输入网络进行训练可能会导致过拟合,所以需要对已有样本通过使用数据增强技术进行扩充。扩充时主要有翻转和旋转两种操作,其中翻转包含水平翻转、上下翻转两种,旋转包含逆时针旋转90∘90^{\circ}90∘、180∘180^{\circ}180∘、270∘270^{\circ}270∘三种。  具体代码如下所示。# -*- coding: utf-8 -*-from PIL import Imageimport osfile_dir = 'E:/Remote S
原创
发布博客 5 小时前 ·
6 阅读 ·
0 点赞 ·
0 评论

对保存的vgg16.ckpt模型实现特征图可视化

在使用NWPU VHR-10数据集训练Faster R-CNN模型之后,可以通过对保存的模型实现特征图可视化来进一步分析模型。
原创
发布博客 2022.05.06 ·
371 阅读 ·
0 点赞 ·
0 评论

使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master

  使用VGG16作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。  如果使用ResNet101作为预训练模型训练Faster-RCNN-TensorFlow-Python3-master,在之前使用VGG16作为预训练模型的训练步骤基础上需要修改几个地方。第一个,在之前的第6步时,改为下载预训练模型ResNet101,在./da
原创
发布博客 2022.01.23 ·
2005 阅读 ·
0 点赞 ·
0 评论

使用DOTA数据集训练Faster R-CNN模型

一、所需文件下载链接二、基础环境配置三、训练及测试过程  使用Faster R-CNN算法在DOTA数据集上实现目标检测。  使用Faster R-CNN算法在VOC2007数据集上实现目标检测的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。一、所需文件下载链接Faster R-CNN源码及操作步骤Github链接→Faster-RCNN-TensorFlow-Python3。Faster-RCNN-Tensor.
原创
发布博客 2021.12.25 ·
1286 阅读 ·
5 点赞 ·
15 评论

使用Python将DOTA数据集的格式转换成VOC2007数据集的格式

这里写目录标题一、VOC2007数据集二、DOTA数据集一、VOC2007数据集  VOC2007数据集的文件结构如下图所示。  其中,文件夹Annotations中存放的是图像的标注信息的xml文件,命名从000001.xml开始;文件夹ImageSets中存放的是图像划分的集合的txt文件,目标检测任务对应的train、val、trainval、test数据集的txt文件存放在Main文件夹中;文件夹JPEGImages中存放的是所有图片的jpg文件,命名从000001.jpg开始;文件夹Seg
原创
发布博客 2021.12.19 ·
1524 阅读 ·
10 点赞 ·
48 评论

使用NWPU VHR-10数据集训练Faster R-CNN模型

一、所需文件下载链接  使用Faster R-CNN算法在NWPU VHR-10数据集上实现目标检测。  使用Faster R-CNN算法在VOC2007数据集上实现目标检测的详细步骤→Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集。一、所需文件下载链接Faster R-CNN源码及操作步骤Github链接→Faster-RCNN-TensorFlow-Python3。Faster-RCNN-TensorFlow-Pytho.
原创
发布博客 2021.12.06 ·
1027 阅读 ·
5 点赞 ·
1 评论

Requirement already satisfied解决办法

  遇到的问题: 当使用电脑中安装的Python 3.7的IDLE去运行某一个python文件时,会出现ModuleNotFoundError: No module named 'numpy'的报错,需要安装numpy库。         而当使用win+R快捷键打开cmd,输入pip install numpy命令时,却得到Requirement already satisfied: numpy in d:\programming\anaconda3\lib\site-packages (1.16.5
原创
发布博客 2021.12.06 ·
15070 阅读 ·
19 点赞 ·
12 评论

使用Python将NWPU VHR-10数据集的格式转换成VOC2007数据集的格式

一、VOC2007数据集二、NWPU VHR-10数据集三、将NWPU VHR-10数据集的格式转换成VOC2007数据集的的格式一、VOC2007数据集  VOC2007数据集的文件结构如下图所示。  其中,文件夹Annotations中存放的是图像的标注信息的xml文件,命名从000001.xml开始;文件夹ImageSets中存放的是图像划分的集合的txt文件,目标检测任务对应的train、val、trainval、test数据集的txt文件存放在Main文件夹中;文件夹JPEGImage.
原创
发布博客 2021.11.28 ·
718 阅读 ·
5 点赞 ·
3 评论

Windows10+Faster-RCNN-TensorFlow-Python3-master+VOC2007数据集

一、所需文件下载链接二、基础环境配置三、训练过程  使用Faster R-CNN算法在VOC2007数据集上实现目标检测。一、所需文件下载链接Faster R-CNN源码及操作步骤Github链接→Faster-RCNN-TensorFlow-Python3。Faster-RCNN-TensorFlow-Python3-master压缩包百度云盘链接→提取码:76wq。VOC2007数据集百度云盘链接→提取码:z8sd。VOC2007数据集的解析→VOC2007数据集详细分析。二、基础环.
原创
发布博客 2021.11.27 ·
846 阅读 ·
1 点赞 ·
16 评论

VOC2007数据集详细分析

  VOC数据集官网链接→http://host.robots.ox.ac.uk/pascal/VOC/。  VOC2007数据集官网链接→http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html。  VOC2007数据集百度云盘链接→提取码:z8sd。VOC2007数据集分析:  VOC2007数据集有20个类:aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow
原创
发布博客 2021.11.23 ·
2685 阅读 ·
3 点赞 ·
2 评论

目标检测中的mAP

  要计算mAP必须先绘出各类别PR曲线,计算出AP。而如何采样PR曲线,VOC采用过两种不同方法。  在VOC2010以前,只需要选取当Recall >= 0, 0.1, 0.2, …, 1共11个点时的Precision最大值,然后AP就是这11个Precision的平均值。  在VOC2010及以后,需要针对每一个不同的Recall值(包括0和1),选取其大于等于这些Recall值时的Precision最大值,然后计算PR曲线下面积作为AP值。AP&mAPmAP:mean Av
原创
发布博客 2021.11.08 ·
5240 阅读 ·
5 点赞 ·
0 评论

R-CNN、Fast R-CNN、Faster R-CNN算法对比

  R-CNN、Fast R-CNN、Faster R-CNN算法都是基于Region Proposal(候选区域)的深度学习目标检测算法,是2-stage两阶段检测模型。  Region Proposal就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜色等信息,保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率(IoU)。  边框回归(Bouding Box Regression):对RegionProposal进行纠正的线性回归算法,目的是为了让Region Propo
原创
发布博客 2021.10.28 ·
342 阅读 ·
0 点赞 ·
0 评论

遥感如何穿透云雨雾和黑夜,从太空看破地球?

  遥感卫星上搭载了遥感传感器,它会接收并分析来自地面的电磁波信号,在遥远的距离下感知地面物体,所以得名遥感。这些卫星一般位于距地400~700千米的高空轨道上。根据接收的电磁波波长不同,遥感可以分为多种不同类型。  可见光遥感接收的电磁波就是可见光,波长一般在0.38~0.76微米之间,只要采用其中三个波段就能合成出一张彩色的图像。  通过观察可以发现,下面这两张照片的清晰度有所区别。  原因之一是它们拍摄时的镜头孔径不一样。  根据以下公式R空间分辨率=a探测器像元间距h轨道高度f焦距R
原创
发布博客 2021.10.22 ·
233 阅读 ·
0 点赞 ·
0 评论

遥感影像的全色、多光谱、高光谱图像

1. 全色图像2. 多光谱图像3. 高光谱图像4. RGB图像  遥感成像原理: 光进入相机镜头,光电感应装置将光信号转换为电信号,量化电脉冲信号,记录为一个像素值。传感器响应函数设计为,要使光电感应装置产生这个电脉冲信号,光子强度必须达到一个阈值。进入镜头的光子数量取决于相机的感受野大小,镜头能通过的光子。多光谱图像要分出多个波段,镜头会分光,红滤镜只过红光,蓝滤镜只通过蓝光,假设相同的光打到全色与多光谱镜头上,显然因为滤光的缘故,多光谱感光器接收到的光子要少于全色感光器。而这些光子已经足够全色产生电.
原创
发布博客 2021.10.20 ·
4501 阅读 ·
7 点赞 ·
0 评论

MFC的一些知识

  微软基础类库(英语:Microsoft Foundation Classes,简称MFC)是一个微软公司提供的类库(class libraries),以C++类的形式封装了Windows API,并且包含一个(也是微软产品的唯一一个)应用程序框架,以减少应用程序开发人员的工作量。其中包含的类包含大量Windows句柄封装类和很多Windows的内建控件和组件的封装类。  MFC是微软公司实现的一个C++类库,主要封装了大部分的windows API函数,所以在MFC中我们可以直接调用 Windows
原创
发布博客 2021.09.07 ·
126 阅读 ·
0 点赞 ·
0 评论

操作系统学习系列内容汇总

操作系统一、概论二、进程管理三、内存管理一、概论操作系统(一)—— 概论(1):导论操作系统(一)—— 概论(2):操作系统结构二、进程管理操作系统(二)—— 进程管理(1):进程操作系统(二)—— 进程管理(2):多线程编程操作系统(二)—— 进程管理(3):进程调度操作系统(二)—— 进程管理(4):同步操作系统(二)—— 进程管理(5):死锁三、内存管理操作系统(三)—— 内存管理(1):内存管理策略操作系统(三)—— 内存管理(2):虚拟内存管理...
原创
发布博客 2021.09.05 ·
220 阅读 ·
0 点赞 ·
0 评论

老杜带你学MySQL学习系列内容汇总

MySQL(一)—— 数据库概述MySQL(二)—— 简单的查询MySQL(三)—— 条件查询MySQL(四)—— 排序MySQL(五)—— 数据处理函数(单行处理函数)MySQL(六)—— 分组函数(多行处理函数)MySQL(七)—— 分组查询MySQL(八)—— 连接查询MySQL(九)—— 子查询MySQL(十)—— unionMySQL(十一、十二)—— limit、关于DQL语句的总结MySQL(十三)—— 表MySQL(十四)—— 表的一些操作MySQL(十五)—— .
原创
发布博客 2021.09.04 ·
476 阅读 ·
1 点赞 ·
0 评论

操作系统(三)—— 内存管理(2):虚拟内存管理

2. 虚拟内存管理2.1 背景2.2 请求调页2.3 页面置换2.3.1 基本页面置换2.3.2 FIFO页面置换2.3.3 最优页面置换2.3.4 LRU页面置换2.3.5 基于计数的页面置换2.4 帧分配2.4.1 帧的最小数2.4.2 分配算法2.4.3 全局分配与局部分配2.5 系统抖动2.5.1 系统抖动的原因2.5.2 内存映射文件2. 虚拟内存管理  虚拟内存技术允许执行进程不必完全处于内存。这种方案的一个主要优点就是,程序可以大于物理内存。此外,虚拟内存将内存抽象成一个巨大的、统一的存.
原创
发布博客 2021.09.01 ·
157 阅读 ·
0 点赞 ·
0 评论

操作系统(三)—— 内存管理(1):内存管理策略

1. 内存管理策略1.1 背景1.1.1 基本硬件1.1.2 地址绑定1.1.3 逻辑地址空间与物理地址空间1.1.4 动态加载1.2 交换1.3 连续内存分配1.3.1内存保护1.3.2 内存分配1.3.3 内存碎片1.4 分段1.5 分页1.6 页表结构1.6.1 分层分页1.6.2 哈希页表1.6.3 倒置页表  计算机系统的主要目的是执行程序。在执行程序及其访问数据应该至少有部分在内存里。  为了提高CPU的利用率和响应用户的速度,通用计算机在内存里必须保留多个进程。1. 内存管理策略  .
原创
发布博客 2021.09.01 ·
377 阅读 ·
1 点赞 ·
0 评论

操作系统(二)—— 进程管理(5):死锁

5. 死锁5.1 系统模型5.2 死锁特征5.2.1 死锁的必要条件5.3 死锁预防5.3.1 互斥5.3.2 持有且等待5.3.3 无抢占5.3.4 循环等待5.4 死锁恢复5. 死锁  在多道程序环境中,多个进程可以竞争有限数量的资源。当一个进程申请资源时,如果这时没有可用资源,那么这个进程进入等待状态。有时,如果所申请的资源被其他等待进程占有, 那么该等待进程有可能再也无法改变状态。这种情况称为死锁(deadlock) 。5.1 系统模型  系统拥有有限数量的资源,需要分配到多个竞争进程。即.
原创
发布博客 2021.09.01 ·
118 阅读 ·
0 点赞 ·
0 评论
加载更多