[HNOI2003]激光炸弹
题目描述
一种新型的激光炸弹,可以摧毁一个边长为 m m m 的正方形内的所有目标。现在地图上有 n n n 个目标,用整数 x i x_i xi , y i y_i yi 表示目标在地图上的位置,每个目标都有一个价值 v i v_i vi .激光炸弹的投放是通过卫星定位的,但其有一个缺点,就是其爆破范围,即那个边长为 m m m 的边必须与 x x x 轴, y y y 轴平行。若目标位于爆破正方形的边上,该目标不会被摧毁。
现在你的任务是计算一颗炸弹最多能炸掉地图上总价值为多少的目标。
输入格式
输入的第一行为整数 n n n 和整数 m m m,
接下来的 n n n 行,每行有 3 3 3 个整数 x , y , v x, y, v x,y,v,表示一个目标的坐标与价值。
输出格式
输出仅有一个正整数,表示一颗炸弹最多能炸掉地图上总价值为多少的目标(结果不会超过 32767 32767 32767 )。
样例 #1
样例输入 #1
2 1
0 0 1
1 1 1
样例输出 #1
1
提示
数据规模与约定
- 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 1 0 4 1 \le n \le 10^4 1≤n≤104, 0 ≤ x i , y i ≤ 5 × 1 0 3 0 \le x_i ,y_i \le 5\times 10^3 0≤xi,yi≤5×103, 1 ≤ m ≤ 5 × 1 0 3 1 \le m \le 5\times 10^3 1≤m≤5×103, 1 ≤ v i < 100 1 \le v_i < 100 1≤vi<100。
思路
: 比较明显的二维前缀和问题,这里要注意的是边界的处理,横纵坐标的范围需要自己确定;同一个位置可以被不同的目标重复覆盖,所以该位置的价值是所有目标价值的累加和;
预处理:
int mx = m, my = m; // mx,my分别用来维护最大的 x和 y值
int r = m; // r是爆炸范围正方型的边长,这里初始值都设为m可以防止爆炸范围超过矩形的最大范围
for(int i = 1; i <= n; i++)
{
int x, y, v;
cin >> x >> y >> v;
x++, y++; // 横纵坐标都是从0开始的,加1使其从1开始
mx = max(mx, x); // 维护最大的x和y值
my = max(my, y);
s[x][y] += v; // 计算某位置的价值
}
求二维前缀和:
for(int i = 1; i <= mx; i++) // 前缀和公式,可以自己画图形来理解
{
for(int j = 1; j <= my; j++)
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + s[i][j];
}
二维前缀和运算:
这里用到的公式是以 (i, j) 作为矩形的右下角坐标, (i - r + 1, j - r + 1) 作为左上角坐标。也可以改变循环的条件,将(i, j)作为左上角坐标,(i + r - 1, j + r - 1)作为右下角坐标进行运算,公式也要做相应的改变。
int res = 0;
for(int i = r; i <= mx; i++)
{
for(int j = r; j <= my; j++)
{
int t = s[i][j] - s[i - r][j] - s[i][j - r] + s[i - r][j - r];
res = max(res, t);
}
}
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 5050;
int s[N][N];
int main()
{
int n, m;
cin >> n >> m;
int mx = m, my = m;
int r = m;
for(int i = 1; i <= n; i++)
{
int x, y, v;
cin >> x >> y >> v;
x++, y++;
mx = max(mx, x);
my = max(my, y);
s[x][y] += v;
}
for(int i = 1; i <= mx; i++)
{
for(int j = 1; j <= my; j++)
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + s[i][j];
}
int res = 0;
for(int i = r; i <= mx; i++)
{
for(int j = r; j <= my; j++)
{
int t = s[i][j] - s[i - r][j] - s[i][j - r] + s[i - r][j - r];
res = max(res, t);
}
}
cout << res << endl;
return 0;
}