A题 (思维)
题意
:给出一个数列,然后可以任选一段区间,把这段区间倒转过来,求经过倒转后字典序最小的一个数列。
样例:
输入:
4
1
1
3
2 1 3
4
1 4 2 3
5
1 2 3 4 5
输出:
1
1 2 3
1 2 4 3
1 2 3 4 5
解题思路:找到第一次出现a[i]!=i的位置,标记这个位置以及i的值,然后寻找i的值所在的位置,将这段区间反转即可。
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int M = 5e2 + 5;
int a[M];
int main()
{
ios::sync_with_stdio(false),cin.tie(0), cout.tie(0);
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
int num = 0, l = 0, r = 0;
for(int i = 1; i <= n; i++)
{
cin >> a[i];
if(a[i] != i && !num)
{
l = i;
num = i;
}
}
for(int i = l; i <= n; i++)
{
if(a[i] == num)
{
r = i;
break;
}
}
vector<int> v;
for(int i = r; i >= l; i--) v.push_back(a[i]);
int i = l;
for(auto it = v.begin(); it != v.end(); it++, i++)
{
a[i] = *it;
}
for(int i = 1; i <= n; i++)
{
cout << a[i];
if(i != n) cout << " ";
}
cout << endl;
}
return 0;
}
B题 (思维)
题意:
给出一个数组,可以交换数组中和为奇数的两个相邻元素,不限次数,问是否能够把原数组通过这种方式变成一个非递减的数组(从小到大有序)
样例:
输入:
4
4
1 6 31 14
2
4 2
5
2 9 6 7 10
3
6 6 6
输出:
Yes
No
No
Yes
解题思路:从可进行交换的条件考虑,相邻的元素和为奇数才能交换,因为只有奇数 + 偶数 = 奇数, 所以每次进行交换的两个数是一奇一偶的,奇数与奇数、偶数与偶数之间无法进行交换,也就是说奇数之间相对位置不发生改变, 偶数之间相对位置也不发生改变,所以只要这个数组奇数之间是有序的并且偶数之间是有序的,那么该数组一定可以经过有限次交换成为一个整体有序的数组。
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int M = 1e5 + 5;
int a[M];
vector<int> odd, even;
int main()
{
ios::sync_with_stdio(false),cin.tie(0), cout.tie(0);
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
for(int i = 1; i <= n; i++)
{
cin >> a[i];
if(a[i] % 2) odd.push_back(a[i]);
else even.push_back(a[i]);
}
int f1 = is_sorted(odd.begin(), odd.end());
int f2 = is_sorted(even.begin(), even.end());
if(f1 && f2) cout << "Yes" << endl;
else cout << "No" << endl;
odd.clear(), even.clear();
}
return 0;
}
C题 (并查集)
题意:
给出一个数列,如果一个数列当中后面的元素比前面的元素小那么这两个元素就位于同一个集合当中,集合当中所有元素都联通,问连通块有几个。
样例:
输入:
6
3
1 2 3
5
2 1 4 3 5
6
6 1 4 2 5 3
1
1
6
3 2 1 6 5 4
5
3 1 5 2 4
输出:
3
3
1
1
2
1
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int M = 1e5 + 5;
int a[M], b[M];
int main()
{
ios::sync_with_stdio(false),cin.tie(0), cout.tie(0);
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
for(int i = 1; i <= n; i++)
{
cin >> a[i];
b[i] = a[i];
}
for(int i = 2; i <= n; i++) a[i] = max(a[i], a[i -1]);
for(int i = n - 1; i >= 1; i--) b[i] = min(b[i], b[i + 1]);
int ans = 1;
for(int i = 1; i <= n - 1; i++)
{
if(a[i] < b[i + 1]) ans++;
}
cout << ans << endl;
}
return 0;
}