数据挖掘技术对ERP的影响

 

进入90年代,随着市场竞争的进一步加剧,企业竞争空间与范围的进一步扩大,80年代MRPⅡ主要面向企业内部资源全面计划管理的思想逐步发展为90年代怎样有效利用和管理整体资源的管理思想,ERP(Enterprise Resource Planning)企业资源计划也就随之产生。与此同时,数据库技术和人工智能技术得到了长足的发展,人们成功的将两者结合了起来,即通过数据库中的大量数据发现知识,这就是数据挖掘技术。这门技术的产生使公司拥有的大量的数据得以应用,而对客户的行为分析也因此成为可能。

  数据挖掘能做什么?它将怎么样影响企业的管理模式?这两个问题从数据挖掘一诞生起就是人们不断思考的课题。

  数据挖掘可以做的工作主要有:

  1)概念/类描述:特征化和区分。即用汇总的、简洁的、精确的方式描述每个类和概念。例如可以研究销售增加20%的产品的特征。

  2)关联分析:发现关联规则,这些规则展示了属性-值频繁的在给定数据集中一起出现的条件。例如:我们可以通过对数据的分析得出啤酒—>尿布的关联规则。即买啤酒的人往往会买尿布。

  3)分类和预测:通过分类可以找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。当被预测的值是数值数据时,通常称为预测(prediction)。预测包含值预测和基于可用数据的分布趋势识别。例如在销售活动中根据商品的描述特性,如price,brand,place_made,type和category,对这三类的每一种导出模型。结果分类应最大限度地区别每一个类,提供有组织的数据集图象。假定结果分类用判定树的形式表示,判定树可能把price看作最能区分三个类的因素。该树可能结实,在price之后,帮助进一步区分每类对象的其他特性包括brand和place_made。这样的判定树可以帮助你理解给定销售活动的影响,并帮助你设计未来更有效的销售活动。

  4)聚类分析:对象根据最大化类内的相似性、最小化类间的相似性的原则进行聚类或分组,所形成的每个簇(聚类)可以看作一个对象类,由它可以导出规则。聚类也便于分类编制(taxonomy formation),将观察到的内容组织成类分层结构,把类似的事件组织在一起。

  5)演变分析:数据演变分析描述行为随时间变化的对象的规律或趋势,并对其建模。如对股票交易数据的演变分析可以识别整个股票时常和特定公司的股票演变规律。这种规律可以帮助预测股票市场价格的未来走向,帮助对股票投资作出决策。

  通过对数据挖掘的了解,我们发现它在ERP中(特别是金融业、零售业和电信业)将得到广泛的应用。

  在金融领域,管理者可以通过对客户偿还能力以及信用的分析,进行分类,评出等级。从而可减少放贷的麻木性,提高资金的使用效率。同时还可发现在偿还中起决定作用的主导因素,从而制定相应的金融政策。更值得一提的是通过对数据的分析还可发现洗黑钱以及其他的犯罪活动。

  在零售业,数据挖掘可有助于识别顾客购买行为、发现顾客购买模式和趋势,改进服务质量,取得更好的顾客保持力和满意程度,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。

电信业已经迅速地从单纯的提供市话和长话服务演变为综合电信服务,如语音、传真、寻呼、移动电话、图像、电子邮件、计算机和WEB数据传输以及其他的数据通信服务。电信、计算机网络、因特网和各种其他方式的的通信和计算的融合是目前的大势所趋。而且随着许多国家对电信业的开放和新兴计算与通信技术的发展,电信市场正在迅速扩张并越发竞争激烈。因此,利用数据挖掘技术来帮助理解商业行为、确定电信模式、捕捉盗用行为、更好地利用资源和提高服务质量是非常有必要的。分析人员可以对呼叫源、呼叫目标、呼叫量和每天使用模式等信息进行分析还可以通过挖掘进行盗用模式分析和异常模式识别,从而可尽早的发现盗用,为公司减少损失。

  ERP的管理思想和模式基本上都是基于一种“面向事务处理”的、按顺序逻辑来处理事件的管理,均不能对无法预料的时间和变化快速作出反应。而企业只有尽可能快地为时常提供那些受消费者青睐的产品,才能获利颇丰。因此,企业必须根据动态多边的时常去作出正确的判断,然后作出决策,这就不得不经常地快速地根据新的决策去改变产品、计划和生产线。通过引进数据挖掘的一些模式和方法,可以使管理人员通过对对象的分析,按照设定的目标去寻找一种最佳的方案。这样就可紧紧跟踪、甚至可达到超前于市场的需求变化,快速作出正确的决策,并以最快的速度执行这些变化。

  我们相信随着信息技术和现代管理思想的进一步发展,ERP的内容还会不断扩展,与此同时,数据挖掘的手段和方法也会日趋成熟和完善,进而运用到实际管理工作中,提高我国企业管理水平。

已标记关键词 清除标记
数据挖掘在各行业的应用论文 数据仓库与数据挖掘.caj 空间数据挖掘技术.caj 数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj 相关案件的数据挖掘.caj 数据挖掘技术.caj 一种实时过程控制中的数据挖掘算法研究.caj EIS 环境下的数据挖掘技术的研究.caj 数据挖掘及其工具的选择.caj 数据挖掘技术与中国商业银行业务发展策略.caj 数据挖掘工具DMTools的设计与实现.caj 数据仓库、数据挖掘在银行中的应用.caj 基于信息熵的地学空间数据挖掘模型.caj 数据挖掘及其在商业银行中的应用.caj 数据挖掘与决策支持系统.caj 数据仓库、数据集市和数据挖掘.caj 数据仓库与数据挖掘1.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj 基于粗糙集理论的数据挖掘模型.caj 数据挖掘及其在 SXWG_EIS 中的应用.caj 数据挖掘——技术与应用综述.caj 挖掘转移规则一种新的数据挖掘技术.caj 以地物识别和分类为目标的高光谱数据挖掘.caj 数据挖掘与虚拟数据库.caj 数据挖掘与电力系统.caj 浅说数据挖掘.caj 带Rough算子的决策规则及数据挖掘中的软计算.caj 数据挖掘系统的一种实现策略.caj 信息检索中的数据挖掘技术.caj 红外光谱谱图库中的数据挖掘.caj 中介粗集及其在数据挖掘中的应用.caj 数据挖掘在音高变化规律学习中的应用.caj 数据挖掘技术在财经领域的应用.caj 知识发现和数据挖掘的研究.caj 数据仓库与数据挖掘技术浅谈.caj 用户访问模式数据挖掘的模型与算法研究.caj 数据仓库的建设与数据挖掘技术浅析.caj 分类特征规则的数据挖掘技术.caj 数据挖掘技术的主要方法及其发展方向.caj OLAP和数据挖掘技术在Web日志上的应用.caj 数据挖掘技术12.caj 数据挖掘技术初探.caj 探索式数据挖掘模型的讨论.caj 前向网络bp算法在数据挖掘中的运用.caj 数据挖掘在Internet信息导航系统中的应用研究.caj 数据挖掘技术123.caj 基于粗糙集(Rough set)的数据挖掘及其实现.caj 数据挖掘技术在建模、优化和故障诊断中的应用.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj 一种测试数据挖掘算法的数据源生成方法.caj 基于数据挖掘的类比推理技术在石油产品分析系统中的实现.caj 神经网络在数据挖掘中的应用研究.caj 数据挖掘方法的评述.caj 基于数据挖掘的类比推理技术在石油产品分析系统中的实现1.caj 一个面向电子商务的数据挖掘系统的设计与实现.caj 数据挖掘技术在煤与瓦斯突出预测中的应用研究.caj 基于数据抽取器实现数据挖掘.caj 基于数据挖掘的群决策模型.caj 基于数据挖掘的普通话韵律规则学习.caj 数据挖掘和知识发现的技术方法.caj 可视化数据挖掘技术及其应用.caj 神经网络数据挖掘方法中的数据准备问题.kdh 基于CORBA的数据挖掘工具KDD-DC.caj 基于高校人事信息库的数据挖掘研究.caj 数据挖掘管理系统.caj 电信网告警数据库中的数据挖掘.caj 数据挖掘原理、方法及其应用.caj 一种基于数据仓库的数据挖掘系统的结构框架.caj OLAP与数据挖掘一体化模型的分析与讨论.caj 一种新型数据分析技术——数据挖掘.caj aaa数据挖掘和数据仓库及其在电信业中的应用.caj 数据挖掘技术及其应用.caj 数据挖掘中概念树的标准、生成和实现.kdh XML与面向Web的数据挖掘技术.caj 数据挖掘和数据仓库及其在电信业中的应用.caj 数据挖掘技术及其在地学中的应用.caj 结合数据融合和数据挖掘的医疗监护报警.caj 基于多媒体数据库的数据挖掘系统原型.caj 数据挖掘技术1.caj 股票信息的数据挖掘.caj 多媒体数据挖掘的相关媒体特征库方法.caj 基于数据挖掘的深部采场岩爆知识的自动获取.caj 空间数据挖掘理论与方法的研究.caj 金融数据挖掘中的非线性相关跟踪技术(英文).caj 数据挖掘技术的一个应用模型.caj DNA中的数据挖掘和启动子识别.caj 数据仓库与数据挖掘12.caj 数据挖掘系统设计.caj 数据挖掘方法的研究.caj 用数据挖掘技术优选侧钻井井位.caj 关注政府上网后的数据挖掘.kdh 数据挖掘技术及其在电力系统中的应用.caj 目前数据挖掘算法的评价.caj 基于数据挖掘的地下硐室围岩稳定性判别.caj 基于属性分类的数据挖掘方法.caj 基于数据挖掘模型的高压输电线系统故障诊断.caj 用于建模、优化、故障诊断的数据挖掘技术.caj 格子机数据挖掘方法.caj 数据挖掘及其在电力系统中的应用.kdh 用于
相关推荐
EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OPERATIONBY FORECASTING COMPENSATORY CONTROL TECHNIQUE.pdf SDSS中空间数据挖掘部件的设计与实现.kdh swlms.pdf Web上的数据挖掘技术和工具设计.kdh Web使用模式研究中的数据挖掘.caj Web数据挖掘技术及工具研究.kdh Web数据挖掘技术探讨.kdh Web数据挖掘的BN实现方案.kdh XML与面向Web的数据挖掘技术.caj 一个新的数据挖掘模型与算法.caj 一个面向电子商务的数据挖掘系统的设计与实现.caj 一种估计人工神经网络泛化误差的新方法.pdf 一种基于数据仓库的数据挖掘系统的结构框架.caj 一种基于神经网络的数据挖掘方法.caj 一种基于遗传算法的模糊神经网络最优控制.pdf 一种实时过程控制中的数据挖掘算法研究.caj 一种建立模糊模型的粗糙集方法.pdf 一种新型数据分析技术——数据挖掘.caj 一种新的高效关联规则数据挖掘算法.caj 一种有效的用于数据挖掘的动态概念聚类算法.caj 一种测试数据挖掘算法的数据源生成方法.caj 一种自适应模糊控制器.pdf 一类递归RBF神经网络模型的稳定性讨论.pdf 不确定性线性系统模型处理的一种新方法.pdf 中介粗集及其在数据挖掘中的应用.caj 二进神经网络隐元数目最小上界研究.pdf 以地物识别和分类为目标的高光谱数据挖掘.caj 信息技术在全球银行业的应用(六)——数据挖掘技术及其应用.kdh 信息技术在全球银行业的应用(六)——数据挖掘技术及其应用1.kdh 信息检索中的数据挖掘技术.caj 信息系统中一种面向粗糙集的数据挖掘方法.caj 全连接回归神经网络的稳定性分析.pdf 关注政府上网后的数据挖掘.kdh 决策支持分析新技术——数据挖掘.caj 分类特征规则的数据挖掘技术.caj 利用决策树进行数据挖掘中的信息熵计算.caj 利用模糊神经网络进行数据挖掘的一种算法.caj 前向网络bp算法在数据挖掘中的运用.caj 区间值属性不完全信息下的数据挖掘.caj 可视化数据挖掘技术及其应用.caj 在IDS中利用数据挖掘技术提取用户行为特征.caj 基于CORBA的数据挖掘工具KDD-DC.caj 基于Web的数据仓库与数据挖掘技术.caj 基于Web的数据挖掘技术及访问路径模式的研究.caj 基于XML的WEB数据挖掘技术.kdh 基于中心流形定理的永磁同步电动机模型的分支分析.pdf 基于云模型的Web日志数据挖掘技术.caj 基于代理的分布式数据挖掘系统设计.caj 基于信息熵的地学空间数据挖掘模型.caj 基于关联规则的舰艇故障诊断数据挖掘系统结构框架.caj 基于增强型算法并能自动生成规则的模糊神经网络控制器.pdf 基于多媒体数据库的数据挖掘系统原型.caj 基于小波理论的数据挖掘方法研究.caj 基于属性分类的数据挖掘方法.caj 基于改进Elman网的非线性系统的自适应建模与预估.pdf 基于数据抽取器实现数据挖掘.caj 基于数据挖掘建立动态人事管理决策系统.kdh 基于数据挖掘建立高校系科办学评估体系的合理性评价系统.caj 基于数据挖掘技术的抽油机泵参调整DSS决策支持系统.caj 基于数据挖掘方法的电子邮件过滤.caj 基于数据挖掘模型的高压输电线系统故障诊断.caj 基于数据挖掘的地下硐室围岩稳定性判别.caj 基于数据挖掘的普通话韵律规则学习.caj 基于数据挖掘的智能化入侵检测系统.caj 基于数据挖掘的深部采场岩爆知识的自动获取.caj 基于数据挖掘的知识发现在MDSS中的应用研究.caj 基于数据挖掘的类比推理技术在石油产品分析系统中的实现.caj 基于数据挖掘的类比推理技术在石油产品分析系统中的实现1.caj 基于数据挖掘的群决策模型.caj 基于智能化数据挖掘的高新技术监测分析技术研究.caj 基于模糊对向神经网络的非线性动态系统辨识器.pdf 基于模糊规则的非线性系统建模方法.pdf 基于模糊逻辑的一类非线性系统直接自适应控制.pdf 基于相联规则的数据挖掘理论.caj 基于知识应用的数据挖掘技术理论分析与应用研究.caj 基于神经网络的多模
EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OPERATIONBY FORECASTING COMPENSATORY CONTROL TECHNIQUE.pdf SDSS中空间数据挖掘部件的设计与实现.kdh swlms.pdf Web上的数据挖掘技术和工具设计.kdh Web使用模式研究中的数据挖掘.caj Web数据挖掘技术及工具研究.kdh Web数据挖掘技术探讨.kdh Web数据挖掘的BN实现方案.kdh XML与面向Web的数据挖掘技术.caj 一个新的数据挖掘模型与算法.caj 一个面向电子商务的数据挖掘系统的设计与实现.caj 一种估计人工神经网络泛化误差的新方法.pdf 一种基于数据仓库的数据挖掘系统的结构框架.caj 一种基于神经网络的数据挖掘方法.caj 一种基于遗传算法的模糊神经网络最优控制.pdf 一种实时过程控制中的数据挖掘算法研究.caj 一种建立模糊模型的粗糙集方法.pdf 一种新型数据分析技术——数据挖掘.caj 一种新的高效关联规则数据挖掘算法.caj 一种有效的用于数据挖掘的动态概念聚类算法.caj 一种测试数据挖掘算法的数据源生成方法.caj 一种自适应模糊控制器.pdf 一类递归RBF神经网络模型的稳定性讨论.pdf 不确定性线性系统模型处理的一种新方法.pdf 中介粗集及其在数据挖掘中的应用.caj 二进神经网络隐元数目最小上界研究.pdf 以地物识别和分类为目标的高光谱数据挖掘.caj 信息技术在全球银行业的应用(六)——数据挖掘技术及其应用.kdh 信息技术在全球银行业的应用(六)——数据挖掘技术及其应用1.kdh 信息检索中的数据挖掘技术.caj 信息系统中一种面向粗糙集的数据挖掘方法.caj 全连接回归神经网络的稳定性分析.pdf 关注政府上网后的数据挖掘.kdh 决策支持分析新技术——数据挖掘.caj 分类特征规则的数据挖掘技术.caj 利用决策树进行数据挖掘中的信息熵计算.caj 利用模糊神经网络进行数据挖掘的一种算法.caj 前向网络bp算法在数据挖掘中的运用.caj 区间值属性不完全信息下的数据挖掘.caj 可视化数据挖掘技术及其应用.caj 在IDS中利用数据挖掘技术提取用户行为特征.caj 基于CORBA的数据挖掘工具KDD-DC.caj 基于Web的数据仓库与数据挖掘技术.caj 基于Web的数据挖掘技术及访问路径模式的研究.caj 基于XML的WEB数据挖掘技术.kdh 基于中心流形定理的永磁同步电动机模型的分支分析.pdf 基于云模型的Web日志数据挖掘技术.caj 基于代理的分布式数据挖掘系统设计.caj 基于信息熵的地学空间数据挖掘模型.caj 基于关联规则的舰艇故障诊断数据挖掘系统结构框架.caj 基于增强型算法并能自动生成规则的模糊神经网络控制器.pdf 基于多媒体数据库的数据挖掘系统原型.caj 基于小波理论的数据挖掘方法研究.caj 基于属性分类的数据挖掘方法.caj 基于改进Elman网的非线性系统的自适应建模与预估.pdf 基于数据抽取器实现数据挖掘.caj 基于数据挖掘建立动态人事管理决策系统.kdh 基于数据挖掘建立高校系科办学评估体系的合理性评价系统.caj 基于数据挖掘技术的抽油机泵参调整DSS决策支持系统.caj 基于数据挖掘方法的电子邮件过滤.caj 基于数据挖掘模型的高压输电线系统故障诊断.caj 基于数据挖掘的地下硐室围岩稳定性判别.caj 基于数据挖掘的普通话韵律规则学习.caj 基于数据挖掘的智能化入侵检测系统.caj 基于数据挖掘的深部采场岩爆知识的自动获取.caj 基于数据挖掘的知识发现在MDSS中的应用研究.caj 基于数据挖掘的类比推理技术在石油产品分析系统中的实现.caj 基于数据挖掘的类比推理技术在石油产品分析系统中的实现1.caj 基于数据挖掘的群决策模型.caj 基于智能化数据挖掘的高新技术监测分析技术研究.caj 基于模糊对向神经网络的非线性动态系统辨识器.pdf 基于模糊规则的非线性系统建模方法.pdf 基于模糊逻辑的一类非线性系统直接自适应控制.pdf 基于相联规则的数据挖掘理论.caj 基于知识应用的数据挖掘技术理论分析与应用研究.caj 基于神经网络的多模
企业信息化是一项革命性工程,本书以企业信息化为基点,介绍基于ERP数据仓库系统的概念、体系结构、开发方法及步骤。, 全书共分9章。第1章主要介绍企业信息化发展历程、数据库与数据仓库概念、特点、区别、联系及数据仓库系统在企业应用概况;第2章介绍数据仓库开发工具——微软SQL Server 2000数据仓库体系结构及应用技术;第3章介绍数据仓库结构及其创建,包括数据仓库数据库、事实表、维度表及多维数据集创建;第4章介绍数据仓库开发完整过程,包括项目系统规划、用户需求确定、系统分析、系统设计、系统实现、系统试用及扩充;第5章介绍DTS基本概念、DTS包的创建、设置及使用,如何利用DTS包把数据源自动转入数据创库;第6章介绍OLAP的MDX表示与实现,涉及OLAP的基本分析动作的MDX语言表示与实现及OLAP的前端展现方式,提供了丰富的MDX语言程序实例;第7章介绍数据挖掘基础,主要包括数据发掘的概念、数据发掘技术、工具、方法及步骤;第8章介绍常用的知识发现技术数据挖掘方法,主要包括依赖性分析、聚类分析、基于神经网络的数据挖掘方法、基于遗传算法的数据挖掘方法及基于粗糙集的数据挖掘方法;第9章介绍SQL Server 2000数据挖掘技术。, 本书注重工程实践性,实用性强,可以帮助读者全面掌握数据仓库构建与数据挖的方法和步骤,开发出具有实用价值的数据仓库系统。, 本书适用于高等院校信息管理与信息系统专业、电子商务专业、物流管理专业等相关专业本科生教材,也可作为金融类、管理类有关专业研究生教材,同时,对企事业单位数据仓库与数据挖掘工作人员、研究人员有重要参考价值。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页