在数字化转型的深水区,IT资产管理(CMDB)的效能直接影响企业运维命脉。
但老生常谈的是,传统CMDB长期面临数据孤岛、更新延迟、人工维护成本高等难题,如同“用算盘管理数字世界”,一直都是一块难啃的硬骨头。
优维科技推出的「CMDB自动发现生成框架图」AI大模型场景,以运维专家大模型为核心,通过技术升维打破这一僵局——基于海量级参数训练,可深度融合企业私域知识库,实现“AI即专家”的运维决策能力,让CMDB从“静态台账”进化为“动态大脑”。
1. 全域感知:终结数据碎片化
弯腰捡碎片的运维生产力太落后了,我们致力于解放这个维度。
-
关键技术支撑:
基于多源探针的无侵入式采集,覆盖云原生、混合IT环境,实时捕捉资源拓扑关系。
-
痛点前后对比:
传统CMDB需手动录入70%配置项,而优维方案实现95%以上自动化发现率。
2. 动态推理:拒绝“过时快照”
大家都用过淘宝吧——“商品快照”通常都出现在订单完成以后,是非常滞后的一种回溯机制,它并不代表先进的生产力,所以我们需要的其实是动态推理能力。
这个能力的创新点在于:
自研动态知识图谱引擎,通过关系推理预测配置项变更影响。比如当某服务器故障时,自动标记关联应用链路的风险等级并推送应急预案。
我们是案例数据支撑的:
优维的某金融客户上线后,配置数据准确率从68%提升至 98%,故障定位时间缩短60%。
3. 闭环进化:告别人工依赖
增量学习机制:AI模型根据运维反馈自动优化发现策略,例如识别新型容器编排工具的标签规则,减少人工干预。
4. 场景化交互革新:从「复杂流程」到「对话驱动」
在对话界面中输入“应用名称+部署机器”,模型自动调用CMDB接口完成以下动作——
-
智能采集:
发现机器上的服务节点与部署实例
-
动态聚类:
基于拓扑关系识别服务边界,自动构建服务调用链路
-
一键录入:
生成标准化配置项,同步至CMDB数据库
从优维某零售企业客户应用案例数据看,传统模式下人工维护服务聚类需3-5天,且错误率高达 15% ;优维方案将流程缩短至10分钟,错误率降低 90%,资源拓扑构建效率提升 12倍。我们见证到的一个非常好的变化。这一成果正是优维AI大模型+CMDB在实战中的最佳印证——从被动响应到主动预判,运维生产力进入全新的维度。
运维专家大模型的知识融合引擎支持私有化部署,可加载企业内部的运维手册、历史工单等非结构化数据,通过向量化检索增强决策合理性。
其中的技术架构并非“算法堆砌”,而是围绕企业真实场景构建闭环系统:
通过全域感知、动态推理、闭环应用的三层引擎协同,优维CMDB实现了从数据采集到决策闭环的全链路智能化的“杀手锏”升级。某能源企业客户将优维运维专家大模型接入内部CMDB后,模型自动识别出3类未被纳入管理的虚拟机集群,并修正了 41% 的配置项关联关系错误,推动IT资源利用率提升 28% 。
“ 科学技术是第一生产力 ”得以具象化。
再举一个“小而精”的例子,当下正值618商战,我们的某零售用户在大促前通过优维CMDB方案发现并处置了一个潜在的风险,不能细说,但我们整理了大致流程:
-
AI模型检测到某数据库集群的资源配置与流量预测不匹配
-
自动生成扩容建议并同步至运维工单系统
-
最终保障大促期间零宕机,资源利用率优化 35%
这个案例让不禁让我们思考:「CMDB即服务」(CMDBaaS)是否存在较大的可行性?如果得以实现,是否意味着资产管理真正获得了“驱动业务决策”的逆天能力?AI大模型+CMDB的想象空间是很大的。
显然“黑箱式AI”并不是优维运维专家大模型的标签,为了延续优维的产品理念和好用易用的产品设计准则,该框架提供了三大开放性功能:
运维专家大模型通过MCP(多维能力协议)与现有运维体系无缝对接,赋予AI“眼睛、耳朵和手”——
-
非侵入式集成:
无需绑定EasyOps平台,支持对接Ansible、Prometheus等 20+ 主流工具
-
能力扩展:
通过MCP动态加载数据采集、异常检测等插件,满足企业个性化需求
根据Gartner的预测,2025年预计有70%的CMDB部署将会嵌入AI能力。
优维的运维专家大模型实践让我们相信,AI大模型并不是要替代传统运维,而是赋予CMDB“感知-决策-进化”的生命力。当IT资产管理从成本中心转变为价值引擎,企业获得的不仅是效率提升,更是面向未来的数字化免疫力。
让我们一起努力。
- end -