- 博客(414)
- 收藏
- 关注
原创 【优维】“吃狗粮”的优维,用Elevo到底做了什么?
它可以将不同的数字人(AI 角色)按照企业的业务流进行协同,让他们各自承担如“简历筛选员”、“面试协调员”、“面试记录官”等角色,共同完成一整套智能化的面试流程。它输出的不是“听起来正确”的通用答案,而是基于优维真实上下文、高精准、可解释的运维决策,有效对抗“幻觉”。这意味着,任何一款AI产品在交付给客户之前,必须先能“折磨”我们自己,解决我们自己的痛点。而当我们将目光投向公司最重要的基石——运维体系本身时,我们意识到,是时候用我们自己的“AI Native”思维,来一次彻底的自我批判与内部重构了。
2025-11-10 10:30:57
664
原创 EasyOps「双11」超前发货:多维升级,运维效率直接开挂!
流程节点处理人支持通过“来源表单”增强配置可视化,替代原需手动编写“节点ID+表单 ID”语法的繁琐操作:配置时可直接选择上一步表单中已指定的人员(如选定的部门、处理人等),快速实现节点处理人动态联动。简单筛选场景可通过基础模式快速操作,复杂筛选场景可通过进阶模式精准适配,实现 CMDB 实例选择 “数据一致、查询高效、配置灵活”,让服务请求、变更管理等场景的信息准确性与处理效率全面提升。用户可灵活添加、快速调用专属审批话术,彻底摆脱手动输入的繁琐,实现个人化审批意见的高效管理。
2025-10-27 14:44:55
858
原创 优维×超聚变联合发布Elevo一体机:共建AI时代基础设施新业态
其预置的容器平台与MaaS平台拥有广泛的生态兼容性,支持多种主流框架与异构算力调度,确保企业现有与未来的AI应用都能无缝迁移、高效运行。因此,我们果断地将经过实践验证的Elevo智能运维引擎“固化”进超聚变领先的算力硬件中,旨在从基础设施的源头确保智能的稳定与可靠,为客户交付一个真正免运维、零顾虑的AI能力闭环。双方的合作,正推动产业从提供分散的“零部件”,转向交付集成的“发动机”,加速AI从“技术尝鲜”到“核心生产力”的普适化进程,为整个数字经济的深化发展注入了强劲而可靠的动力。优维科技与超聚变的合作,
2025-09-30 15:09:20
432
原创 优维HAO案例:某金融机构CMDB升级改造项目
通过分阶段推进建设,精准聚焦核心任务,新 CMDB 已切实承担起数据底座的关键角色,为监控、日志、安全等多平台提供了稳定可靠的配置数据支撑,同时通过可视化功能提升了IT资源管理的直观性与效率,数据治理工作也为后续持续优化奠定了坚实基础。项目按照严谨的计划逐步推进,从首月的立项申请开始,历经项目计划制定、需求调研与设计等阶段,在后续的月份里,依次完成了配置采集研发、数据治理页面化方案设计与开发、可视化功能定制等工作,并最终实现旧CMDB下线与项目结项。
2025-08-15 17:41:02
887
原创 优维HAO案例:某金融机构的持续交付升级之路
优维相信,真正有价值的技术产品,不该停留在解决单一环节的问题,而应像手术刀般精准切入交付全链路,通过编排能力打通从开发到部署的断点,用信创适配筑牢国产化的根基。就像客户感受到的“基因重组”,本质上是优维在产品设计时就植入的理念:交付的终极目标不是更快的发布速度,而是让每个组织都能拥有自主可控、持续进化的技术交付能力,让工具成为激活业务创新的“催化剂”,而非束缚发展的“方法论”。诚如某机构客户的技术负责人对优维持续交付的评价所言——这不仅是个工具升级,更是交付模式的基因重组。实时阻断嵌套脚本异常。
2025-07-31 14:33:50
437
原创 优维 EasyOps® v7.10 滚烫上新:打造「自愈·穿透·乐高式进化」的智能运维核心系统
通过配置系统的进程特征,例如系统的工作目录、运行用户是可被明确的标识的,这样我们通过节点白名单即可确保只采集当前系统进程信息,上报数据在可控范围内,避免冗余。除了可支持资源实例的发现,自动发现功能也能做到关联关系的识别,我们将项目积累的资源关联关系发现规则内置发布,真正帮助用户实现了开箱即用。在ITSM的表单设计中,用户/用户组/组织架构是常见的高频配置场景,之前基本依赖脚本实现复杂规则或通过实例选择控件实现简单选人,配置相当繁琐复杂,脚本还存在重复编写、调整容易遗漏、流程加载变慢等问题。
2025-07-18 15:09:11
843
原创 优维HAO案例:某头部券商运维中台与低代码平台建设
基于这一系列痛点,客户的核心诉求非常明确:构建一个能够有效整合运维能力、显著降低工具开发与应用门槛的统一平台,以支持运维团队更快速、自主地定制场景化工具,实现运维效能的整体跃升和团队自主创新能力的增强。在首批7个典型运维场景工具的开发过程中,沉淀了超过100个可复用的后端业务构件和多个前端业务构件(如集群搜索框、实例查询组件等),为后续开发积累宝贵资产。成功整合了包括配置管理(CMDB)、持续交付、自动化运维、网络管理、事件告警、单点登录等在内的十余项核心运维工具能力,形成统一的API服务目录。
2025-06-27 14:10:47
712
原创 机器学习模型:逻辑回归之计算概率
在图 2 中,线性方程会成为 S 型函数的输入,该函数会将直线弯曲成 S 形。请注意,线性方程 可以输出非常大或非常小的 z 值,但 S 型函数的输出 函数 y' 始终介于0 和 1 之间(不含 0 和 1)。例如,左侧图表中的黄色方块的 z 值为 -10,但右侧图表中的 S 型函数会将该 -10 映射为 y' 值0.00004。随着输入 x 的增加,sigmoid 函数的输出会接近 1,但永远不会达到 1。同样,当输入值减小时,S 型函数值 函数的输出接近,但永远不会达到 0。
2025-06-20 10:12:35
405
原创 高考后「服务器」重启:优维老司机教你优化人生新系统
今天,就化身你的“人生系统运维顾问”,献上这份独家定制的《高考后“服务器”重启优化指南》,备好你的肥宅快乐水,跟着我们一起科学“调优”。祝愿每一位年轻人都能运维好自己的人生,如果在探索“人生新系统”的路上,你对保障“系统稳定”的技术产生了兴趣,欢迎未来加入IT运维领域,一起探索维护更广阔的技术世界(这是一条行业硬广)。高考后“放下所有”的心态是一种系统“新环境”,但这也潜在着新风险——网络诈骗、虚假信息、不良诱惑就像伺机而动的“黑客”和“病毒”,必须筑牢安全防线。这些都是宝贵的“调试信息”,帮你优化运行。
2025-06-20 10:07:55
1026
原创 妈呀!算法已经会读心了:当AI用你的身份说服你相信它的谎言
苏黎世实验室的某个对照组揭露残酷真相:当人类辩论者尝试模仿GPT-4的逻辑轰炸时,说服效果反而下降34%,认知战场所谓的对称性正在失去——我们人类在AI面前曾经引以为傲的情感,正成为防御链上最脆弱的接缝,一掰就断。令人倒吸一口热气的是(夏天,热浪比凉气提神),那些识别出AI身份的参与者(占比75%),反而更易承认观点被改变。当GPT-4用你的教育背景推导出你最可能信服的论点,用你的职业特征设计逻辑陷阱,甚至用你的政治倾向预判反驳路径时,那个关于“自由意志”的古老信仰,正在服务器荧光中剧烈摇晃。
2025-06-20 10:04:39
785
原创 老王2025发文半年考:大模型运维从技术演进到生态重构的十二个路标
2025年是优维科技在运维专家大模型持续深耕的关键周期,在完成2024年的奠基和积累后,我们将在今年逐步夯实场景应用和行业实战,大模型运维十二个路标的年中浮现,既是优维的运维大模型发展的历史注脚,某种程度也是其未来发展的参考坐标。今年3月,老王的个人微信公众号“互联网与大模型运维杂谈”恢复更新,彼时起意的初衷在于,作为优维科技官方公众号之外的交流平台,个人号是一片更加天马行空、更能彰显一个20年运维老兵独立思考的自留地。我们认为,这里的核心在于将大模型转化为人脑的“认知外设”。
2025-06-16 14:29:19
549
原创 Meta 推出 HawkEye:通过简化的工作流程改变机器学习调试
随着机器学习领域的不断发展,像 HawkEye 这样的工具将在塑造人工智能的未来、推动这一充满活力领域的效率、创新和增长方面发挥关键作用。Meta 推出了 HawkEye,这是一款突破性的工具,旨在彻底改变机器学习 (ML) 的调试和工作流程优化,标志着机器学习 ( ML ) 技术取得了重大飞跃。作为 Meta 基于 ML 的产品,HawkEye至关重要,它能够处理多样化数据、多模型和持续 A/B 测试的复杂性,从而提升预测的稳健性和用户体验质量。机器学习 (ML) 领域的调试历来是一项艰巨而复杂的任务。
2025-05-23 14:38:17
829
原创 优维CMDB杀手锏:基于AI大模型的「CMDB自动发现生成框架图」
优维科技推出的「CMDB自动发现生成框架图」AI大模型场景,以运维专家大模型为核心,通过技术升维打破这一僵局——基于海量级参数训练,可深度融合企业私域知识库,实现“AI即专家”的运维决策能力,让CMDB从“静态台账”进化为“动态大脑”。优维的运维专家大模型实践让我们相信,AI大模型并不是要替代传统运维,而是赋予CMDB“感知-决策-进化”的生命力。大家都用过淘宝吧——“商品快照”通常都出现在订单完成以后,是非常滞后的一种回溯机制,它并不代表先进的生产力,所以我们需要的其实是动态推理能力。
2025-05-23 14:24:35
1089
原创 Qwen3模型名称中的A*B参数解析
在Qwen大模型中,激活参数(Activated Parameters)是混合专家模型(MoE)架构中的核心概念,指在每次推理过程中实际被激活并参与计算的参数子集。Qwen的MoE模型(如Qwen3-235B-A22B)由多个专家网络组成,每个输入仅激活其中的一部分专家(例如激活8个专家中的2个)。例如,简单问题仅需少量激活参数快速响应,复杂问题则激活更多参数进行深度推理。例如,Qwen3-30B-A3B总参数为300亿,但每次推理仅激活30亿参数(占总参数的10%),却能实现与更大稠密模型相当的性能。
2025-05-19 10:58:13
1057
原创 机器学习模型(4/4课时):超参数
但是,如果学习速率过高,模型将永远不会收敛,而是在最小化损失的权重和偏差之间来回跳动。模型会随机选择每个批处理中包含的示例,对其梯度求平均值,然后每迭代一次更新权重和偏差。例如,如果梯度幅度为 2.5,学习率为 0.01,则模型将将参数更改 0.025。损失图,显示使用过大学习率训练的模型,其中损失曲线会大幅波动,随着迭代次数的增加而上下波动。请注意,使用随机梯度下降法可能会在整个损失曲线中产生噪声,而不仅仅是在收敛附近。损失图,显示使用过大学习速率训练的模型,其中损失曲线在后续迭代中急剧增加。
2025-05-16 14:38:08
667
原创 EasyOps®5月热力焕新:三大核心模块重构效能边界
在应用系统管理中,我们将管理对象从「服务实例」优化为「部署实例」,这一改变旨在提升管理效率与数据展示清晰度。此前,系统以 “IP + Port” 组合定义服务实例。当同一 IP 下启用多个进程或端口时,会产生多个服务实例。比如一台主机上运行多个应用服务端口,就会被拆分为多个实例展示。这种方式虽能清晰呈现每个应用进程提供的服务,但在实际运维管理中,颗粒度过于细致。多数运维人员更习惯从应用在主机的实际部署视角出发,关注应用安装在哪些主机、具体目录位置,这与「部署实例」概念更为契合,也更适配 K8S 和云资源的部
2025-05-13 10:21:18
979
原创 机器学习模型(3/4课时):梯度下降
如果我们绘制梯度下降过程中的权重和偏置点图表,这些点看起来就像从山上滚落的球,最终会在没有下坡的点停止。在训练过程中直观呈现模型的快照状态,有助于加深对更新权重和偏差、降低损失和模型收敛之间的联系的理解。您可以看到,在前几次迭代中,损失会大幅下降,然后逐渐下降,在第 1,000 次迭代左右趋于平稳。当模型收敛时,进行更多迭代不会进一步降低损失,因为梯度下降法已找到几乎能将损失降至最低的权重和偏差。请注意,黑色损失点形成了损失曲线的确切形状:先急剧下降,然后逐渐向下倾斜,直到达到损失表面上的最低点。
2025-05-13 10:14:17
806
原创 行业首次:优维EasyOps平台能力全面MCP化,打造AI时代人机协同
企业AI大脑准备好了,急需Model Context Protocol(MCP)扮演了“智能协作基座”的角色:其通过标准化资源接口、动态上下文管理与工具调度协议,首次实现了“模型决策流”与“自动化工作流”的毫秒级对齐。在我们的蓝图中,运维核心系统将进化为企业的“数字决策中枢”,它不仅是系统稳定性的守护者,更是业务创新的策源地。2025年,优维将逐步释放专家大模型的完整能力,涵盖智能巡检、成本优化、风险预测等核心场景,重新定义“运维即服务”的行业标准。
2025-05-12 12:03:00
1444
原创 机器学习模型(2/4课时):损失函数
例如,以下图片显示了使用 MAE 训练的模型和使用 MSE 训练的模型。离群值更接近使用 MSE 训练的模型,而不是使用 MAE 训练的模型。例如,3,000 磅的车重属于典型的车重范围,而每加仑 40 英里的油耗属于典型的油耗范围。但是,对于模型的预测而言,重 3,000 磅的汽车每加仑能行驶 40 英里属于离群值,因为模型会预测重 3,000 磅的汽车每加仑能行驶 18 到 20 英里。例如,如果模型预测值为 2,但实际值为 5,我们并不关心损失为负值 −3(2−5=−3)。损失函数侧重于值之间的。
2025-04-18 11:47:47
828
原创 偷偷研究了Grok3后,优维悟了……
话说回来,运维行业应该警惕“唯Benchmark论”或其他任何唯一论,转而关注技术-场景-成本的三角平衡,驾龄20年的老司机都知道的朴素道理:开长途车不能长时间占用超车道,如果要稳,要学会回归右侧行车道。xAI的实践给了我们这样的提示:未来运维领域的竞争将聚焦于“可落地的智能”——即在高精度、低延迟与可解释性之间的动态最优解。Grok 3 Beta通过混合训练框架(Hybrid Training)融合领域知识库,其法律场景的条款识别准确率提升19%,验证了xAI在复杂结构化数据处理的优势。
2025-04-18 11:42:29
450
原创 机器学习模型(1/4课时):线性回归
例如,使用此模型,一辆重 4,000 磅的汽车的预测油耗为每加仑汽油行驶 15.6 英里。虽然本部分的示例仅使用一项特征(汽车的重量),但更复杂的模型可能依赖于多项特征,每项特征都有一个单独的权重 (w1、w2 等)。随着汽车发动机的增大,其每加仑的英里数评级通常会降低。使用该模型,一辆重 4,000 磅的汽车的预测油耗为每加仑 15.6 英里。随着汽车马力的增加,每加仑的英里数评级通常会降低。一个包含五个特征的模型,用于预测汽车的每加仑汽油能行驶的英里数。y 是每加仑行驶英里数,即我们要预测的值。
2025-04-11 14:33:07
387
原创 优维HAO案例:香港联交所上市企业「智能运维平台」项目
将现有数据进行梳理规整,针对应用资源类、项目组织信息类、平台资源类模型进行优化设计,补充遗漏、删除重复模型字段,将运管的资产信息保存到CMDB中,分析一期模型间关系,将IT资产信息合理汇聚,优化防火墙策略,互联网暴露面的梳理;通过将防火墙、阿里云策略、NAT、F5VS、域名等模型的大量数据通过显性或隐性关系组织起来,可实现私有云及阿里云上各类项目互联网暴露资产的统筹管理,快速定位各系统的互联网暴露面服务与项目、主机、进程等的对应关系,实现风险的快速排查定位,提高处置效率。跟APM对接的压缩优化;
2025-04-03 15:36:18
935
原创 房地产+优维:存量时代数字化运维的场景化突围之路
很多人认为现在从业务视角谈房地产已经不合时宜了,但所谓“外行看热闹,内行看门道”,从尚未远去的2024年看,房地产市场依然具备明显的“冰火两重天”特征:CRIC数据显示,百强房企权益销售额同比下降5.7%,但TOP10企业市场占有率突破48.5%,行业集中度加速提升。在房地产行业穿越周期的关键时点,数字化转型已进入“硬核能力”比拼阶段。优维科技通过将运维系统从“后台保障”升级为“业务使能平台”,正在帮助领先房企构建新的竞争力内核——这或许就是数字化时代企业生存的终极法则:用底层效率革命,赢得前端创新资格。
2025-04-03 15:35:46
767
原创 腾讯,崩了!
诚然,理论上说专业的运维本可以让这类状况更可控。但我们这次不扯什么“世界是个巨大的草台班子”,不过相比这个,牛马们的讨论似乎显得更劲爆。不如试试把告警响应从人工智障升级成人工智能。昨天下午,腾讯会议服务异常引发巨大关注。与其在热搜上表演运维版《保持通话》,我们不理论了,我们只看评论。毕竟在优维的理想国里。
2025-04-03 15:35:13
153
原创 优维EasyOps®Q1焕新:CMDB效率革命×智能监控赋能核心系统「智效双升」
用户登录后,能清晰看到我们支持的资源发现类型,尤其突出了服务进程的发现,聚焦于可快速出效果的模块采集。融合后,无论是监控态势感知中的指标面板,还是更多资源下的各资源分析面板,展现形式均统一为左侧分析视图菜单、右侧具体分析视图,有效避免了用户选择视图时的困惑。过去,我们具备多种指标视图能力,但存在不统一的情况,且不同用户对视图需求各异,为解决这些问题,我们对视图展示能力进行了融合优化。在采集任务管理过程中,我们发现采集配置的编辑入口过深,操作繁琐,影响维护效率,为此,我们更新了采集配置项的批量编辑功能。
2025-04-02 17:05:14
957
原创 优维HAO案例:某头部券商高效持续交付平台打造新质生产力
通过持续交付体系的深度重构,客户不仅实现了业务发布的秒级响应与零风险管控,更将运维团队从重复劳动中解放,使其真正成为驱动业务创新的核心引擎。未来,优维科技将继续以行业场景为锚点,深化技术创新与生态协同,助力更多企业在数字化浪潮中,以“既快又稳”的步伐,迈向高质量增长的新高度。支持用户个性化编排,通过并行化部署与自动化验证,实现100秒内完成系统级变更,中断时间下降75%,业务验证覆盖率100%。通过一站式答疑与自动化工单部署,用户问题解决效率提升50%,运维团队得以从重复劳动中抽身,转向高价值技术攻坚。
2025-03-31 15:51:53
489
原创 QKV矩阵:优维大模型自注意力机制的数学之美
优维大模型将QKV的抽象计算逻辑具象化为运维场景的智能决策引擎,赋予系统“理解-推理-行动”的全链路能力。1. 相似度计算:Q与K的点积(图1)衡量Token间相关性,如“告警”与“日志”的关联强度。Q来自解码器状态,K、V来自编码器输出,实现上下文对齐(如故障诊断中“数据库”指向具体实例)。将用户自然语言查询解析为Q向量,与CMDB资源的K向量匹配(图4)。3. 价值聚合:加权求和V矩阵(图3),生成上下文感知的向量表示。:将用户问题映射为Q,从知识库K/V中检索答案(图6)。
2025-03-14 18:05:31
1044
原创 词向量:优维大模型语义理解的深度引擎
词向量是Transformer突破传统NLP技术瓶颈的核心,它通过稠密向量空间映射,将离散符号转化为连续语义表示。优维大模型基于词向量技术,构建了运维领域的“语义地图”,实现从数据到知识的智能跃迁。在Transformer中,词向量通过嵌入层将Token映射为512维向量(图1),并作为自注意力机制的输入。通过多头注意力机制(图2/图3),同一词在不同语境中(如“端口占用”vs“端口开放”)获得差异化表示。将CPU、内存、网络等监控指标的向量表示融合,精准定位瓶颈(如“CPU骤增由磁盘IO引发”)。
2025-03-14 18:03:45
544
原创 Token:优维大模型高效处理序列数据的基石
为此,Transformer引入位置编码(Positional Encoding)(图2),通过正弦函数生成与位置相关的特征向量,并与词嵌入相加,确保模型能感知序列顺序。在Transformer中,输入文本首先被拆分为Token序列(如单字或子词),每个Token通过词嵌入(Token Embedding)转换为高维向量(图1)。自注意力机制通过Token间的交互计算权重,例如解码器在生成“机”字时,需综合历史Token(如“BEGIN”)和编码器输出的上下文信息(图3)。
2025-03-14 18:00:52
555
原创 优维大模型春季上新:「9能力+1智能体开发平台」十分提效
企业运维的数字化转型,亟需从“人找数据”转向“数据找人”——这个问题我们论述过很多次了,今天只上“纯干货”——以看得见+摸得着的方式,一口气给大家安排了9大核心能力和1个智能体开发平台的实操演示(实际库存远不止这些)。之所以选择在这个时节打出一记拳拳到肉的组合拳,只为用朴素的臻功夫诠释“通过AI技术实现运维场景的深度解耦与灵活编排,助力企业精准降本、高效提效”的实战效果。支持按属性、跨层级关系、多条件组合查询,例如“查询所有部署在华东区域且CPU使用率>90%的主机”。”,AI自动解析拓扑关系并输出答案。
2025-03-14 17:53:52
693
原创 优维眼中的Manus:AI工程化思维重构Agent的运维端启示
当Manus演示视频中那个自动生成的PPT带着些许不完美的排版问世时,我们看到的不是技术缺陷,而是一个新时代的隐喻——真正的智能化不在于追求完美无瑕的单个操作,而在于构建可观测、可干预、可演进的技术体系。我们曾经在某头部券商的案例中提到,正是通过类似的「决策-执行-验证」三层架构,实现了数据中心百万级资源的智能调度。这种工程化思维很容易让我们联想到优维的「运维原子能力库」理念——优维Murphy平台将复杂的运维操作拆解为可编排的原子指令,Manus正在构建面向通用场景的AI原子能力矩阵——
2025-03-07 14:37:28
723
原创 信创互认:优维科技携手统信软件共促信创成果再进阶
优维科技的EasyOps平台与统信操作系统的适配,为企业提供了可靠选择,可助力企业提升运维效率,降低成本,保障业务稳定运行,加速数字化与信创转型进程。此次在多平台的成功适配,意味着我们能够为不同硬件架构的用户提供稳定、高效、安全的运维解决方案,有效解决企业在信创转型中面临的技术适配难题。未来,优维科技将持续深化与统信软件等信创产业伙伴的合作,加大研发投入,拓展产品适配范围,不断提升产品和服务质量,为推动信创产业蓬勃发展贡献力量,携手各界共同繁荣国产信创生态。与统信软件技术有限公司的。
2025-02-27 15:38:59
474
原创 北大福利 | DeepSeek手把手零门槛:全民玩转AI效率革命(附北大原版PPT)
从大模型技术内核到百行百业落地公式,从“推理之王”DeepSeek-R1的逆袭逻辑到普通人秒变AI高手的提效密码——我们通过圈子渠道拿到了热乎的,并拆解了这两份硬核资料,看过都说好,文末附完整PPT获取方式,错过再等N个AI年哦~_“生成量化交易代码+自动DEBUG”_ → 开发效率提升4倍(案例见PPT2-Page41);_“公文写作模板库”_ → 通知/请示/会议纪要一键生成(案例见PPT2-Page38)。“我要做XX,给XX用,希望达到XX效果,但担心XX问题” → 精准控制输出边界。
2025-02-27 15:37:17
561
原创 20年鲸变 | 大厂信创国产化布局成果
从2006年政策萌芽开始,到2023年进入成熟期,再到今天的飞跃期,不管在过程中你如何看待信创国产化,国内的巨头们都已经在前线高地上摇旗呐喊。国产化倒逼企业重构技术栈,例如阿里云推动金融行业核心系统从IOE向分布式架构转型。信创设备虽初期体验不佳,但可规避海外技术断供风险(如Windows停服威胁)。长期看,国产软硬件适配成熟后,企业IT支出可降低20%-30%。我们认为,国产化替代的深层逻辑主要体现在以下三大核心需求:。
2025-02-27 15:36:04
210
原创 快过DeepSeek!欧洲AI闪击中美,IT运维生态将这样重构
美国时间2025年2月10日凌晨,硅谷的科技精英们还在沉睡,杭州汇金国际大厦12楼的DeepSeek工程师还在为访问过载问题召开下午茶会议,而清晨的埃菲尔铁塔下,数字革命已悄然爆发——「马克龙豪掷1090亿开欧洲星际之门」的新闻与「LeChat登顶AppStore法国区免费下载榜」的捷报同步刷屏,法国总统亲自站台呼吁国民下载LeChat,这款由法国Mistral公司开发的AI产品在72小时内突破千万下载量,其开源架构与多模态交互能力直接对标ChatGPT,而训练成本仅为后者的1/20。
2025-02-18 11:20:09
827
原创 优维大模型+DeepSeek:Murphy解锁运维新效能
引入集成DeepSeek能力的Murphy大模型后,运维效率得到了显著提升——在一次业务高峰期,系统出现了响应缓慢的问题,Murphy通过对海量交易数据和系统日志的分析,快速定位到是由于某个数据库表的索引失效导致查询效率降低。作为一家技术立司的服务商,我们很难如此感性地作出评判,但这次集成确实让我们看到,Murphy在功能和效率上展现出了更好的素质,无论是应对复杂的运维场景,还是满足企业对数据安全和定制化的需求,集成DeepSeek后的Murphy都展现出了卓越的性能和落地价值。
2025-02-10 16:09:57
923
原创 鸭先知 | 优维2025年运维趋势简报
这份2025年IT运维行业发展趋势预测简报,是优维技术委员会的老司机利用假期闲暇阅读大量权威材料后整理而成。运维行业的机会与挑战,全都被我们浓缩在这12张大字报里,献给我们热爱的这项事业,预祝大家:旗开得胜🚩😀。那不如先从一组干净利落的数据开始,为阔别重逢的工作找找方向,为酝酿已久的想法找找灵感。春节过完,回归职场,节日惯性还在,工作完全没有头绪?撰文:优维技术委员会 / 制图:人间清醒。
2025-02-05 11:42:52
375
原创 探秘 Neat 公司的自动测试架构:如何高效创造与价值保持
这使得学科团队成员能够凭借自身的领域知识,运用测试自动化团队提供的工具编写新的测试,而测试自动化团队则主要通过对其他团队编写的测试代码进行代码审查的方式提供专业指导,双方紧密协作,共同推动测试工作的高效开展。通过这样的方式,我们既能充分发挥测试自动化的高效性和准确性,又能借助人类的智慧和创造力,在测试过程中发现那些潜在的、不易被机器察觉的问题,从而实现更全面、更可靠的软件质量保障,推动软件开发与交付过程朝着更加优化、高效的方向发展。此时,明确阐释 “为什么”,即解释倡导该做法的原因,就显得尤为关键。
2024-12-26 12:58:56
1172
原创 优维HAO案例:央企SDIC控股全牌照综合类券商CMDB配置管理平台
此外,通过CMDB紧密配合监控系统、架构可视化系统等系统建设,依据项目中互联网运维、系统平台室、网络管理室、安全治理室、规划架构室等多部门的实际需求,成功构建多样化消费场景,全方位提升运维管理的效能与质量,为ESS整体业务的稳定与拓展提供强劲支撑。此前,优维曾携手ESS圆满完成了CMDB的一期、二期建设,打下了坚实的数据管理生态基础,并在生产环境接受了海量数据的严酷验证,整体表现可圈可点,双方都建立了广泛的自信与相互信任。推动数据运营赋能与消费场景落地,挖掘数据价值,提升业务效能与数据驱动力。
2024-12-26 09:49:08
1125
原创 优维HAO案例:百年央企旗下中国500强跨境券商分布链路追踪建设
该计划旨在以核心交易为核心切入点,深入剖析交易流程中的潜在风险点与故障高发区域,建立快速响应与精准修复机制,有效减少核心交易的线上问题平均修复时间(MTTR),从而为CMS交易业务的持续、顺畅开展筑牢坚实基础,全面强化CMS的市场竞争力。CMS是百年央企CMG集团旗下的证券公司,位列中国500强企业榜单,跨境业务布局广泛,在中国香港、英国、韩国设子公司,借助CMS国际等开展跨境证券经纪等多元业务,CMS得以广泛服务国内外客户,并全面支持企业国际化与个人跨境资产配置。
2024-12-18 12:00:00
700
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅