[Leetcode] Triangle

描述

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

给一个三角形,找出一条从定点到底边的路径,使得路径的元素和最小,要求每一次只能走下一行中与当前元素相邻的元素。

分析1

这是一道典型的动态规划题目。

我们可以使用一个数组 dp[i][j] 用来表示从顶点到第 i 行第 j 列的最短路径,那么我们只需找到 dp 最后一行中所有元素的最小值就可以了。递推公式是:

dp[i][j]=min(dp[i1][j1],dp[i1][j])+t[i][j]

为了节省空间,我们可以把 dp 中同一列的元素共用一个位置表示,那么就可以将原来的二维数组变成一维数组。

代码1

class Solution {
public:
    int minimumTotal(vector<vector<int>>& t) {
        int res = INT_MAX;
        vector<int> dp(t.size(), 0);
        for (int i = 0; i < t.size(); i++) {
            for (int j = i; j >= 0; j--) {
                if (j == i) dp[j] = t[i][j] + dp[j - 1];
                else if (j == 0) dp[j] = t[i][j] + dp[j];
                else dp[j] = min(dp[j], dp[j - 1]) + t[i][j];
            }
        }
        for (int a:dp) {
            if (res > a) res = a;
        }
        return res;
    }
};

分析2

另外一种思路是,用 dp[i][j] 用来表示从第 i 行第 j 列到底部的最短路径,那么我们返回 dp[0] 就可以了,比上面的做法少了最后比较的步骤。递推公式是:

dp[i][j]=min(dp[i][j],dp[i][j+1])+t[i][j]

同理,也可以将 dp 中同一列的元素共用一个位置表示以减小空间复杂度。

代码2

class Solution {
public:
    int minimumTotal(vector<vector<int>>& t) {
        vector<int> dp(t.back());
        for (int i = t.size() - 2; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                dp[j] = t[i][j] + min(dp[j], dp[j + 1]);
            }
        }
        return dp[0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值