描述
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
给一个三角形,找出一条从定点到底边的路径,使得路径的元素和最小,要求每一次只能走下一行中与当前元素相邻的元素。
分析1
这是一道典型的动态规划题目。
我们可以使用一个数组
dp[i][j]
用来表示从顶点到第
i
行第
为了节省空间,我们可以把 dp 中同一列的元素共用一个位置表示,那么就可以将原来的二维数组变成一维数组。
代码1
class Solution {
public:
int minimumTotal(vector<vector<int>>& t) {
int res = INT_MAX;
vector<int> dp(t.size(), 0);
for (int i = 0; i < t.size(); i++) {
for (int j = i; j >= 0; j--) {
if (j == i) dp[j] = t[i][j] + dp[j - 1];
else if (j == 0) dp[j] = t[i][j] + dp[j];
else dp[j] = min(dp[j], dp[j - 1]) + t[i][j];
}
}
for (int a:dp) {
if (res > a) res = a;
}
return res;
}
};
分析2
另外一种思路是,用
dp[i][j]
用来表示从第
i
行第
同理,也可以将 dp 中同一列的元素共用一个位置表示以减小空间复杂度。
代码2
class Solution {
public:
int minimumTotal(vector<vector<int>>& t) {
vector<int> dp(t.back());
for (int i = t.size() - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
dp[j] = t[i][j] + min(dp[j], dp[j + 1]);
}
}
return dp[0];
}
};