Tensorflow数据读取方式总结

1、使用placeholder读内存中的数据 最简单的一种方法是用placeholder,然后以feed_dict将数据给holder的变量,进行传递值。如下面代码所示: from __future__ import print_function import tensorflow as ...

2018-03-17 17:36:48

阅读数 1930

评论数 1

卷积的各种形式

1、卷积的各种结构:Convolution arithmetic tutorial2、如何理解转置卷积(transpose conv) 如何理解深度学习中的deconvolution networks?

2017-09-16 10:54:10

阅读数 756

评论数 0

CNN的反向求导及练习

http://www.cnblogs.com/tornadomeet/p/3468450.html

2017-09-16 09:46:54

阅读数 843

评论数 0

偏置方差分解Bias-variance Decomposition

http://blog.csdn.net/pipisorry/article/details/50638749

2017-09-12 16:46:18

阅读数 572

评论数 0

TensorFlow中 tf.nn.embedding_lookup

import tensorflow as tf src_vocab_size = 10 src_embed_size = 5 source = [1,3] with tf.variable_scope("encoder"): embedding_encoder = ...

2017-09-03 13:33:17

阅读数 1305

评论数 0

TensorFlow梯度求解tf.gradients

import tensorflow as tf w1 = tf.Variable([[1,2]]) w2 = tf.Variable([[3,4]]) res = tf.matmul(w1, [[2],[1]]) grads = tf.gradients(res,[w1]) with ...

2017-08-26 16:25:59

阅读数 7485

评论数 0

Tensorflow学习率的learning rate decay

参考: http://blog.csdn.net/u012436149/article/details/62058318

2017-08-26 15:29:56

阅读数 1759

评论数 0

TensorFlow不同交叉熵计算方式

import tensorflow as tf #our NN's output logits=tf.constant([[1.0,3.0,2.0],[3.0,2.0,1.0],[1.0,2.0,3.0]]) #step1:do softmax y=tf.nn.softmax(lo...

2017-08-26 14:30:45

阅读数 1699

评论数 0

python常用功能总结

1、argparse - 命令行选项与参数解析 http://www.2cto.com/kf/201412/363654.html parse_known_args() http://blog.csdn.net/mameng1/article/details/54409910

2017-08-20 16:53:58

阅读数 337

评论数 0

Gradient Boosting 总结

1、如果计算特征的重要性参考:Tree ensemble算法的特征重要度计算

2017-08-04 10:15:55

阅读数 313

评论数 0

VGGNet原理及Tensorflow实现

\quadVGGNet是常用的网络,通常可以直接拿来用,或者可以将前面的层拿出进行fine-tune,用于训练我们自己的模型,同时vgg的官方对训练的参数进行了开源,便于进行transfer-learning.VGG 网络结构

2017-07-31 16:39:53

阅读数 672

评论数 0

Tensorflow的一些基本用法

在使用TensorFlow中会遇到一些其基本的用法,再次作为记录备忘!tf.add_to_collection在计算整体的loss是会将不同部分的loss放入一个集合中,最后计算整体的loss,因此会用到tf.add_to_collection,具体参考TensorFlow中的cifar10的例子...

2017-07-19 11:16:01

阅读数 666

评论数 0

基于HMM的中文分词

关于HMM模型的介绍,网上的资料已经烂大街,但是大部分都是在背书背公式,本文在此针对HMM模型在中文分词中的应用,讲讲实现原理。尽可能的撇开公式,撇开推导。结合实际开源代码作为例子,争取做到雅俗共赏,童叟无欺。没有公式,就没有伤害。模型介绍第一次听说HMM模型是从李开复的博文论文中听说的:李开复1...

2017-07-18 17:05:49

阅读数 981

评论数 1

搜索引擎-倒排索引

参考文献: http://blog.csdn.net/hguisu/article/details/7962350

2017-07-17 10:30:48

阅读数 263

评论数 0

深度学习防止过拟合的方法

\quad过拟合即在训练误差很小,而泛化误差很大,因为模型可能过于的复杂,使其”记住”了训练样本,然而其泛化误差却很高,在传统的机器学习方法中有很大防止过拟合的方法,同样这些方法很多也适合用于深度学习中,同时深度学习中又有一些独特的防止过拟合的方法,下面对其进行简单的梳理.1. 参数范数惩罚\q...

2017-05-02 20:52:11

阅读数 18728

评论数 1

AlexNet原理及Tensorflow实现

\quadAlexNet的出现点燃了深度学习的热潮,下面对其进行介绍,并使用tensorflow实现.1. AlexNet网络结构图片来源:AlexNet的论文\quad整个网络有8个需要训练的层,前5个为卷积层,最后3层为全连接层.第一个卷积层 输入的图片大小为:224*224*3 第一个卷积层...

2017-05-02 16:10:46

阅读数 31553

评论数 10

Tensorflow实现卷积神经网络

\quad如果不明白什么是卷积神经网络,请参考:计算机视觉与卷积神经网络 下面基于开源的实现简单梳理如何用tensorflow实现卷积神经网络.实现卷积神经网络加载数据集# 加载数据集 import tensorflow as tf from tensorflow.examples.tutoria...

2017-04-29 15:29:16

阅读数 3429

评论数 7

面试中常见的字符串库函数编程

\quad下面对一些常见的关于字符的库函数进行实现,这些也是通常面试中所问的一些问题,需要注意的是有些看起来很简单,但是一定要考虑一些边界条件,否则很容易出错.strcpy实现char* strcpy(char* dst,const char* src){ if(dst== nullptr...

2017-04-20 14:50:34

阅读数 387

评论数 0

Tensorflow入门-实现神经网络

\quad学习tensorflow一段时间了,感觉非常的好用,在使用是,有时候最重要的是想好神经网络的结构,这样就可以随意的在神经网络中加如隐含层了,特别主要的是矩阵的维度相乘的问题,下面将使用tensorflow实现神经网络,做一下自己的理解.实现无隐含层的神经网络下面以手写数字识别的例子作为说...

2017-04-16 17:09:23

阅读数 4796

评论数 0

推荐系统入门

1. 推荐系统的意义\quad互联网大爆炸时期的信息过载的解决方案:\quad对用户而言:找到好玩的东西,帮助决策,发现新鲜事物。 \quad对商家而言:提供个性化服务,提高信任度和粘性,增加营收。2. 推荐系统的构成\quad前台的展示页面,后台的日志系统,推荐算法等部分组成,如下图所示:3....

2017-03-14 21:33:30

阅读数 21279

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭