时间序列分析是机器学习中的重要领域之一,其中线性回归是一种常用的方法。在本篇文章中,我们将探讨如何使用线性回归模型对时间序列数据进行建模和预测。下面是一个示例代码,演示了如何使用Python中的Scikit-learn库实现时间序列的线性回归。
import numpy as np
from sklearn.linear_model import LinearRegression
# 创建示例时间序列数据
# 这里假设时间序列的自变量是 t,因变量是 y
t = np.array([1,
时间序列分析是机器学习中的重要领域之一,其中线性回归是一种常用的方法。在本篇文章中,我们将探讨如何使用线性回归模型对时间序列数据进行建模和预测。下面是一个示例代码,演示了如何使用Python中的Scikit-learn库实现时间序列的线性回归。
import numpy as np
from sklearn.linear_model import LinearRegression
# 创建示例时间序列数据
# 这里假设时间序列的自变量是 t,因变量是 y
t = np.array([1,