如何判断整型算术运算是否溢出
一个算术运算溢出,是指完整的整数结果不能放到数据类型的字长限制中去。
溢出的原因是显而易见的,考虑两个非负整数x和y,满足0<=x,y<=(2^w)-1。xy可以被表示为w位无符号数字,然而考虑它们的和的话,我们可以得到0<=x+y<=2^(w+1)-2。这个和需要w+1位来表示。如果我们再用其他数加上这个结果的话,可能我们又将需要w+2,w+3位来表示新的结果。这种持续的“字长膨胀“意味着,如果想要完整地表示算数运算的结果,我们就不能对字长做任何限制(实际上Lisp就是这样干的)。如果我们限制了数据类型的字长,溢出的发生是不可避免的。
由于溢出后的结果往往不是我们想要的结果,我们必须对溢出时的情形另做处理,但在此之前我们必须得先能够判断什么时候发生了溢出。
无符号整数的溢出判断比较简单:对一个字长w的无符号数加法运算,当x+y>=2^w时,第w+1位被程序舍去,相当于在x+y的和的基础上减去了2^w。由于x,y<=(2^w)-1,所以有x+y<x(或者x+y<y)。
int uadd_ok(unsigned x,unsigned y){ unsigned sum=x+y; return sum>=x; }
有符号整型数加法的溢出判断稍微麻烦一些:我们把可能发生的溢出情况分为正溢出与负溢出,正溢出是指两个非负数相加却得负数的情况,而负溢出是指两个负数相加却得正数的情况。可以证明其他时候都没有发生溢出。
int tadd_ok(int x,int y){ int sum=x+y; int neg_over=x<0&&y<0&&sum>=0; int pos_over=x>=0&&y>=0&&sum<0; return !neg_over&&!pos_over; }
一种常见的错误的判断方法如下:
int tadd_ok(int x,int y){ int sum=x+y; return (sum-x==y)&&(sum-y==x); }
实际上不论是否溢出,(x+y)-x始终得到y,(x+y)-y始终得到x。至于为什么(x+y)-x始终得到y,讲得学术一点是因为补码加上形成一个阿贝尔群,由阿贝尔群的交换律和结合律有(x+y)-x==y。(其实只要想到从补码加上来理解+-运算,会很自然地理解为什么不能这样判断)。
能够判断整数加法是否溢出后,我们再来看看如何判断如何判断整数减法溢出,一种很自然的做法是:
int tsub_ok(int x,int y){ return tadd_ok(x,-y); }
咋一看好像也没有什么不对的,但在写代码时用到负号来取相反数时一定要注意对TMin的处理,因为-TMin=TMin(TMin没有对应的正数),在这个函数中如果不对TMin做处理的话,如果y取TMin那么对任意x<0函数都会判断发生溢出(其实并没有)。
对于TMin的处理很简单,考虑y==TMin的情况下x取何值时x-y会溢出呢,只有x>=0的时候。
改善过后的函数:
int tsub_ok(int x,int y){ if(y==TMin) return x>=0?0:1; else return tadd_ok(x,-y); }
关于TMin的值可由<limit.h>头文件中INT_MIN宏定义获得。
最后我们讨论一下如何判断整数乘法发生溢出,判断溢出的代码如下:
int tmult_ok(int x,int y){ int p=x*y; return !x||p/x==y; }
该函数溢出判断的正确性的证明可参考CSAPP,此处略去