KubeFlow——机器学习流水线
一. 为何使用- kubeflow
- AI模型生产成本问题
随着 AI 广泛使用在不同领域的业务中, 使商业模式发生改变——降低人力成本、提升自动化率就带来了商业价值。虽然业务价值持续增长,但企业对深度学习的投入也进入了冷静期,如何在有限人力成本的条件下,来最大化算法工程师的效率,成为企业、或是 AI 算法从业人员面临的问题;
- 业务工作流程繁多: 数据标注/清洗、模型训练/验证/测试、跨平台的模型转换支持、产品级模型部署/交付.
- 业务算法落地、迭代升级需要人工参与(业务重复做,不会给算法人员的个人能力带来提升,长期以来就会慢慢地失去行业竞争力).
- 模型训练、部署都还会面临复杂的算法环境问题.
- Kubeflow 的优势
- 借助 docker 和 Kubernetes 来管理复杂的深度学习软件环境问题
- 将机器学习任务流程化、节点化(后续会详细介绍)
- 调高业务作业流程的自动化率,避免流程化的工作重复做,可释放人力,让AI 算法人员能更专注在算法模型研发,而不是重复的业务迭代.
二. 快速搭建 kubeflow
- 本次演示计算机硬件环境: Ubuntu 18.04 / 2080Ti * 2
- 默认环境已经安装好——docker-ce/nvidia-docker/nvidia-driver
- 为了降低初学者的时间成本,建议使用 rancher 搭建 K8s 集群。(如果你已具备搭建K8s 集群能力,请直接跳转到第 2 节: kubeflow 安装 )
1. 搭建 K8s 集群
rancher 安装
docker run -d --restart=unless-stopped \
-v /var/lib/ranchers:/var/lib/rancher/ \
-p 8081:80 -p 8443:443 rancher/rancher:v2.4.6-rc1
- 待容器启动后,尝试浏览器打开页面: https://0.0.0.0:8443 ,初次登陆需要设置密码,设置完毕后登陆界面
快速搭建集群
- 登陆成功过后有以下界面显示,点击”添加集群“

- 选择自定义模式

- 选择 K8s 版本(kubeflow 有 K8 的兼容问题,建议选择 v1.5.12,这个很重要),及其它插件.

- 选择节点角色,拷贝脚本命令至终端为集群添加计算节点【之后就是等待,根据网络情况,等待的时间会有差异】

- 安装完成后,可看到如下页面:

2. 安装 kubeflow-0.6