B站up主——“DR-CAN”《动态系统建模》系列课程之电路系统建模_基尔霍夫定律的解题过程

这是UP主的课程视频,讲的非常nice!强烈推荐大家去听听!https://www.bilibili.com/video/BV13t411t7aR/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=47f1775a430f1dd9bcb3807911fae015

一、题目电路图及参数

       课程中UP主提供的电路图及相关元器件的参数如下图所示:

 

注:e_{c}=\frac{1}{C}\int_{0}^{t}i_{3}dt

       e_{R_{1}}=i_{1}\cdot R_{1}=\frac{4}{3}i_{1}

       e_{R_{2}}=\left ( i_{1}-i_{2}\ \right )\cdot R_{2}=4\left (i_{1}-i_{2} \right )    

       e_{R_{3}}=\left ( i_{2}-i_{3}\ \right )\cdot R_{3}=3\left (i_{2}-i_{3} \right )
       e_{R_{4}}=i_{2}\cdot R_{4}=2i_{2}=e_{o}\Rightarrow i_{2}=\frac{1}{2}e_{o}

二、各个回路的KVL方程

Loop1:e_{R_{1}}+e_{R_{2}}-e_{R_{i}}=0

              根据“注”所示,带入Loop1的方程可得:

              \frac{4}{3}i_{1}+4\left ( i_{1}-i_{2} \right )-e_{i}=0

              根据上式,可得i_{1}=\frac{3}8{}e_{o}+\frac{3}{16}e_{i}

Loop2:e_{R_{3}}+e_{R_{4}}-e_{R_{2}}=0

              根据“注”所示,带入Loop2的方程可得:

              3\left (i_{2}-i_{3} \right )+2i_{2}-4\left ( i_{1}-i_{2} \right )=0

              根据Loop1所得,可得:i_{3}=e_{o}-\frac{1}4{e_{i}}

Loop3:e_{R_{C}}-e_{R_{3}}=0

              根据“注”所示,带入Loop3的方程可得:

              \frac{1}C{\int_{0}^{t}i_{3}dt}-3\left ( i_{2}-i_{3} \right )=0

              根据Loop1、Loop2所得,即可得到关于e_{i}e_{o}的微分方程:

              e_{o}+\frac{3}2{Ce_{o}^{'}}=\frac{1}4{e_{i}+\frac{3}4{Ce_{i}^{'}}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值