文章目录
一、计算机
1.计算机基础
(1)计算机组成原理
缩写 | 英文全称 | 中文释义 | 拓展 |
---|---|---|---|
ALU | 算术逻辑单元 | Arithmetic Logical Unit | |
heuristic | 启发式的 | ||
reg | register | 寄存器 | |
ACK帧 | acknowledgement frame | 确认帧 | |
present bit | 状态位、有效位、存在位、合法位 | ||
page frame | 页框、页帧、物理块、内存块、主存块 |
(2)计算机网络
缩写 | 英文全称 | 释义 | 拓展 |
---|---|---|---|
Frame | 帧 | ||
MTU | Maximum Transmission Unit | 最大传输单元 | |
PDU | Protocol Data Unit | 协议数据单元 | |
token | 令牌 | 计网中的token是用于身份验证的令牌,NLP中的token是词元 | |
CRC | Cyclic Redundancy Check | 循环冗余校验码 | |
NAT | Network Address Translation | 网络地址转换 | 将私有IP地址转换为公有IP地址 |
①NAT(Network Address Translation,网络地址转换)是一种将私有IP地址转换为公有IP地址的技术,通常用于局域网(LAN)与广域网(WAN)之间的数据通信。它主要用于解决IPv4地址短缺问题,并提高网络安全性。
②IP地址转换:NAT将内部网络的私有IP地址映射为外部网络的公有IP地址,允许多个设备共享一个公有IP地址进行外网通信。
③NAT的工作原理:NAT工作时,它会修改数据包的IP头部,将源IP地址替换为一个公有IP地址,同时记录下源端口和转换后的公有IP与端口的映射。数据返回时,NAT会根据这个映射将数据包转发回原始的内部设备。
(3)数据库
单词 | 中文 |
---|---|
index | 索引 |
schema | 模式 |
key | 码、键、关键字 |
attribute | 属性 |
relation | 关系 |
domain | 域 |
Cartesian product | 笛卡尔积 |
DBA、DataBase Administrator | 数据库管理员 |
(4)编译原理
单词 | 释义 | 拓展 |
---|---|---|
parse | 解析 | |
intermediate code | 中间代码 | |
optimisation | 优化 | |
assembly code | 汇编代码 | |
object code | 目标代码 | |
linking | 链接 | |
compiler | 编译器 | |
closure | 闭包 | |
augmented | 增广的 | augmented grammar 增广文法 augmented matrix 增广矩阵 |
item | 项 | |
automata | 自动机 | Nondeterministic Finite Automada,NFA,不确定的有穷自动机 |
concrete | 具体的 | concrete syntax 具体语法 |
parse | (语法) 分析 | parsing 分析法 |
semantic | 语义 | |
syntax | 语法 | abstract syntax tree 抽象语法树 |
grammar | 文法 | LR grammar LR文法 |
(5)离散数学
英文 | 中文 |
---|---|
Floors and Ceilings | 上取整和下取整 |
Difference | 差分 |
Inverse Difference | 逆差分 |
Forward Difference | 前向差分 |
Backward Difference | 后向差分 |
Falling Factorial | 下降阶乘幂 |
Rising Factorial | 上升阶乘幂 |
discrete | 离散的 |
2.软件开发
(1)编程词汇
缩写 | 英文全称 | 中文释义 | 拓展 |
---|---|---|---|
GCC | GNU编译器 | GNU Compiler Collection | |
SQL | 结构化查询语言 | Structured Query Language | |
STL | Standard Template Library | 标准模板库 | |
OOP | 面向对象编程,面向对象的程序设计 | Object Oriented Programming | |
lvalue | 左值 | ||
rvalue | 右值 | ||
Abstraction | 抽象 | ||
Encapsulation | 封装 | ||
Inheritance | 继承 | ||
Polymorphism | 多态 | ||
identation | 缩进 | ||
iteration | 循环 | ||
recursion | 递归 | ||
millisecond | 毫秒 | ms | |
undefined reference to … | 未定义 | ||
redefinition | 重定义 | ||
multiple definition | 多次定义 | ||
constructor | 构造函数 | ||
copy constructor | 拷贝构造函数 | ||
destructor | 析构函数 | ||
assignment operator function | 赋值运算符函数 | ||
LF | Line Feed | 换行符 | \n ,ASCII码值是10,十六进制是0a |
para | parameter | 形参 | |
arg | argument | 实参 | |
exception | 异常 | ||
subscript | n.下标 | ||
catenate | v.连接 | cat | |
Undefined identifier | 未定义的标识符 | ||
socket | 套接字 | ||
fd | file descriptor | 文件描述符 | |
-S | source code | 源代码 | |
object-oriented | 面向对象的 | OO | |
xxx-oriented | 基于xxx的 | ||
idx | index | 数组下标 | |
EOF | end of file | 文件结尾 | while(scanf(“%d”,&n) !=EOF){ } |
res | result | 结果 | |
cnt | count | 数值 | |
ret | return | 返回值 | |
ptr | pointer | 指针 | 指针就是地址 |
buf | buffer | 缓冲区 | |
recursion | 递归 | recursive call:递归调用 unwinding recursion:解除递归 | |
compile | 编译 | C2143:编译错误 | |
factorial | 阶乘 | ||
mul | multiply | 乘 | imul 带符号整数乘 |
var | variable | 变量 | |
static | 静态的 | 静态链表:static linked list | |
operand | [计] 操作数;[计] 运算对象 | ||
op | operator | 运算符 |
(2)开发术语
缩写 | 英文全称 | 中文释义 | 拓展 |
---|---|---|---|
GUI | Graphical User Interface | 图形化用户界面 | 又称图形用户接口,是指采用图形方式显示的计算机操作用户界面 |
CLI | command line interface | 命令行界面 | |
UUID | Universally Unique Identifier | 通用唯一标识符 | |
documentation | 说明文档 | ||
SEO | Search Engine Optimization | 搜索引擎优化 | |
CRUD | Create 创建 Retrieve 检索 Update 更新 Delete 删除 | 增删改查 | |
UI | User Interface | 用户界面 | |
API | Application Programming Interface | 应用程序编程接口,简称接口 | |
WSL | Windows Subsystem for Linux | Windows的Linux子系统 | |
CI/CD | Continuous Integration / Continuous Delivery(Deployment) | 持续集成 / 持续交付(部署) | |
DevOps | Development & Operations | 开发和运维 | |
diag | Diagnostics | 诊断 | 指用于监测、测试、诊断、故障排除、性能监控和分析系统性能与状态的工具、模块或系统 |
workaround 方案 | 临时解决方案、临时办法 | ||
AR | Action Require | 需要完成的任务 | |
flow | 流程、工作流程 | 梳理一下这个活儿的flow写成wiki文档 | |
feature | 新功能、新特性 | “Add new feature”通常表示添加了一个新功能或特性。我们用feature,而不用function。 | |
known hosts list | 已知主机列表 | ||
merge | 合入 | 指代码合并入仓库,即已经过Gerrit平台的CI/CD 和 人工代码review,并且submit,代码合并入库的完成状态。 | |
repo | repository | 仓库 | code repository 代码仓库 |
(3)Linux
缩写 | 英文 | 中文 | 拓展 |
---|---|---|---|
TTY | Teletypewriter | 交互式终端 | cron就没有TTY,非交互式环境,不可见,属于后台守护进程 |
UTC | Coordinated Universal Time | 协调世界时 | |
CST | China Standard Time | 中国标准时间 (北京,上海) | CST = UTC + 8 |
通过选择UTC这个缩写,避免了语言上的偏袒。例如,英语国家的标准时间常用CUT,而法语国家可能更倾向于使用TUC。为了兼顾两者,采用了UTC,这个缩写没有明显倾向于任何单一语言。
(4)软件
缩写 | 英文全称 | 中文释义 |
---|---|---|
install | 安装 | |
uninstall | 卸载 | |
OCR | 光学字符识别 | Optical Character Recognition |
log in / sign in | 登录 | |
sign up | 注册 | |
APP | application | 应用程序 |
launch | 启动 (计算机程序) | |
desktop shortcut | 桌面快捷方式 | |
setup wizard | 安装向导 | |
spam folder | 垃圾邮件 | |
AI enthusiast | AI爱好者 | |
Release of Liability | 免责声明 |
Dont forget to check your spam folder. 不要忘记检查你的垃圾邮箱。
(5)web
缩写 | 英文全称 | 中文释义 |
---|---|---|
XHR | XML Http Request | XML HTTP 请求 |
XHR(XMLHttpRequest)是一个浏览器提供的API,用于在不重新加载整个页面的情况下,与服务器交换数据。它允许网页通过异步方式发送请求并接收响应,从而实现动态加载数据,比如在网页上更新内容而不刷新整个页面。XHR最初是为处理XML数据而设计的,但如今也可以处理JSON、文本或其他类型的数据。
常见的使用场景包括:
①动态加载网页内容(例如,AJAX技术)。
②实时更新页面的数据(如新闻、天气、股票信息等)。
③向服务器提交表单数据而不重新加载页面。
(6)云服务
缩写 | 英文全称 | 中文释义 |
---|---|---|
SaaS | Software as a Service | 软件即服务 |
IaaS | Infrastructure as a Service | 基础设施即服务 |
PaaS | Platform as a Service | 平台即服务 |
3.深度学习
(1)论文
缩写 | 英文 | 中文 | 拓展 |
---|---|---|---|
architecture | 架构 | ||
scale | 缩放 | scaled 缩放 | |
Bibliography | 参考文献 | ||
Literature Review | 文献综述 | ||
SOTA | State of the Art | 艺术级状态、最新水平 | 指在某一特定任务或数据集上,当前表现最好的模型或方法。 指某一领域或技术中当前最高水平的研究成果或技术方案。它代表了特定时间段内经过验证的最优方法,常用于学术论文或技术报告中凸显创新性和先进性。 |
benchmark | 基准 | 一套标准化的评估体系 | |
baseline | 基线 | 简单传统的基础模型或方法 | |
pipeline | 管线 | 一系列按顺序执行的数据处理步骤或阶段 每个步骤负责特定的任务,并将结果传递给下一个步骤,最终完成一个完整的流程。这种设计方式能够使复杂的过程变得模块化和易于管理 | |
Ablation study | 消融实验 | 通过去除或修改模型的不同模块,来验证每个模块的贡献 | |
case study | 案例研究 | ||
CCF | China Computer Federation | 中国计算机学会 | |
ACM | Association for Computing Machinery | 美国计算机协会 | |
IEEE | Institute of Electrical and Electronics Engineers | 电气电子工程师学会 | |
PI | Principal Investigator | 独立学术带头人、独立项目负责人 | |
# corresponding author | # 通讯作者 | ||
* joint first authors | * 共同第一作者 | ||
enumeration | 枚举 | ||
survey | 综述 | ||
paper | 论文 | ||
propose | 提出 |
例如,在机器学习领域,一个典型的pipeline可能包含以下几个步骤:
①数据预处理:包括数据清洗、缺失值填充、异常值处理等。
②特征工程:从原始数据中提取有用的特征,进行特征选择或者创建新的特征。
③模型训练:使用经过处理的数据训练机器学习模型。
④模型评估:对训练好的模型进行评估,检查其准确性和有效性。
⑤模型部署:将训练好的模型部署到生产环境中,以便实时或批量地对新数据进行预测。
(2)深度学习 DL
根据AI领域两位泰斗斯图亚特·罗素(Stuart Russell)和彼得·诺维格(Peter Norvig)合著的经典著作《人工智能:一种现代的方法》,人工智能的核心目标是通过计算机程序或机器来模拟人类智能,涵盖语言理解、问题解决、学习、认知和决策等多方面能力。
英文 | 中文 | 缩写 | 拓展 |
---|---|---|---|
Fully connected neural network | 全连接神经网络 | FC | 也被称为 “多层感知机 MLP”。全连接神经网络是前馈神经网络的一个典型实现 |
Feed-Forward Neural Network | 前馈神经网络 | FFN | “前馈”强调信息流向无环,但不限定层间如何连接——不仅可以是全连接,也可以是稀疏连接(如卷积层)、局部连接等。例如,卷积神经网络(CNN)中的卷积层也是前馈结构,但它并不属于全连接网络。 |
backbone network | 主干网络 | ||
Reinforcement Learning with Human Feedback | 基于人类反馈的强化学习、人类反馈对齐 | RLHF | |
Multilayer Perceptron | 多层感知器 | MLP | |
encoder | 编码器 | ||
decoder | 解码器 | ||
batch size | 批量大小 | 在机器学习和深度学习中,指每次迭代训练时所使用的样本数量 | |
Tensor | 张量 | ||
compress | 压缩 | condense是浓缩 | |
pooling | 池化 | ||
context | 上下文 | ||
sparse | 稀疏的 | ||
semantic | 语义的,图像区域的,区域分割 | ||
few-shot learning | 小样本学习 | ||
federated learning | 联邦学习 | FL | 分布式机器学习方法 |
supervised learning | 强监督学习 | ||
weakly supervised learning | 弱监督学习 | ||
semi-supervised learning | 半监督学习 | ||
self-supervised learning | 自监督学习 | ||
unsupervised learning | 无监督学习 | 不需要数据集,没有标签,通过学习数据的内部结构。典例是:K-means、PCA | |
neural network | 神经网络 | NN | NPU 神经网络处理单元 (Neural-network Processing Unit) |
Convolutional Neural Networks | 卷积神经网络 | CNN | |
Generative Adversarial Network | 生成对抗网络 | GAN |
1.联邦学习(Federated Learning)是一种分布式机器学习方法,它允许模型在多个分散的边缘设备或服务器上进行训练,而不需要将数据集中到一个中心位置。这种方法特别适合于处理敏感数据(如个人隐私信息),因为它减少了数据泄露的风险。
2.联邦学习允许各参与方在本地对数据进行训练,而不是将数据集中到一个中心服务器。通过加密机制下的参数交换,各参与方可以在不泄露数据隐私的情况下,共同构建一个虚拟的全局模型。
(3)计算机视觉 CV
缩写 | 单词 | 中文释义 | 拓展 |
---|---|---|---|
IoU | Intersection over Union | 交并比 | |
mIoU | mean Intersection over Union | 平均交并比 | |
multimodal | 多模态 | ||
LVLMs | large vision-language models | 大视觉语言模型 | |
YOLO | You Only Look Once | “你只看一次” | YOLOv5做目标检测 |
LLaVA | Large Language and Vision Assistant | 大语言和视觉助手 | 是一种多模态大模型 |
CLIP | Contrastive Language-Image Pretraining | 对比语言-图像预训练 | 也是一种多模态大模型 zero-shot |
DETR | DEtection TRansformers | 基于Transformer的检测模型 | |
VQA | Visual Question Answering | 视觉问答 | 理解图像内容并回答 |
ReID | Person Re-Identification | 行人重识别 | |
image inpainting | 图像修复 | ||
SR | super-resolution | 超分辨率 | |
voxel | 体素,体元,立体像素 | ||
pixel | 像素 | ||
translation invariance | 平移不变性 | ||
SSIM | Structural Similarity Index | 结构相似性指数 | SSIM 更侧重图像的结构相似度,越接近1表示图像质量越好。 在很多应用中,SSIM 比 PSNR 更能准确反映图像质量,因为它考虑了人眼对图像结构的敏感度。 |
PSNR | Peak Signal-to-Noise Ratio | 峰值信噪比 | PSNR 主要衡量图像的像素差异,越大表示图像质量越好 |
SIFT | Scale Invariant Feature Transform | 尺寸不变特征变换 |
1.ReID(Person Re-Identification,行人重识别) 是计算机视觉领域的一项核心技术,旨在跨不同摄像头或场景识别同一行人。简单来说,它的任务是:给定一个目标行人图像(查询图像),从大量不同摄像头拍摄的候选图像库中,找到属于同一人的图像。主要用于智能安防、智能零售行业。
2.IoU评估单个预测和真实标注之间的重叠程度。
mIoU则是对所有类别的IoU进行平均,常用于多类别的评估
(1)IoU用于评估两个区域(例如预测区域和真实标注区域)之间的重叠程度。它通过计算预测区域与真实区域的交集与并集的比值来衡量:
其中,A和B分别表示预测区域和真实标注区域。IoU值越高,表示预测的区域与真实标注区域越重合,性能越好。
(2)IoU(mean Intersection over Union): mIoU是IoU在多个类别上的平均值,通常用于评估多分类问题中的性能,特别是在语义分割中。它是对每个类别的IoU值求平均,计算公式为:
其中,N是类别的数量,
IoU𝑖 表示第i个类别的IoU值。mIoU提供了一个整体的性能评价,能够反映在多个类别上模型的表现。
3.DETR
DETR(DEtection TRansformers)是一种基于Transformer的目标检测模型,它由Facebook AI Research(FAIR)团队在2020年提出。DETR模型的创新之处在于,借助Transformer模型的强大能力,避免了传统目标检测方法中复杂的先验框架、区域提议网络(RPN)和非最大抑制(NMS)等步骤,简化了目标检测的工作流程。
总结:DETR利用Transformer架构简化了目标检测的流程,同时提升了模型的灵活性和精度。
4.CLIP(Contrastive Language-Image Pretraining)是由OpenAI于2021年提出的一种基于对比学习的跨模态模型,旨在通过联合训练图像和文本数据来建立图像和文本之间的关联。CLIP的主要目标是使模型能够理解文本和图像之间的相似性,从而能够执行多种跨模态任务,如图像分类、图像生成、零-shot学习等。
CLIP最大的亮点之一是其zero-shot学习能力。
(4)自然语言处理 NLP
-
2022年11月30日,OpenAI发布GPT-3.5,标志着AI行业的真正启动,迅速推动了AI的普及化。
-
2023年3月14日,OpenAI发布了GPT-4,是首款多模态大模型,支持文本+图像的输入,生成文本输出。
-
2024年11月,人工智能公司 Anthropic 推出了一种开放标准协议:模型上下文协议(Model Context Protocol,简称 MCP)。旨在解决大型语言模型(LLM)与外部数据源和工具之间的集成问题。
缩写 | 英文 | 中文 |
---|---|---|
MCP | Model Context Protocol | 模型上下文协议 |
few-shot | 少样本 | |
zero-shot | 零样本 | |
few-shot fine-tuning | 少样本微调 | |
multimodal | 多模态 (文字、图片、音频、视频) | |
LLM | Large Language Model | 大语言模型 |
LVLM | Large Vision Language Model | 大型视觉语言模型 |
LLaMA | Large Language Model Meta AI | Meta的大语言模型 |
vLLM | virtualized Language Learning Model | 虚拟语言学习模型 |
End-to-End | 端到端 | |
token | 词元 | |
fine-tuning | 微调 | |
B | billion | 十亿参数 |
CoT | chain-of-thought | 链式思考、思维链 |
AI Agent | 人工智能代理、智能体 | |
prompt Engineering | 提示词工程 | |
ICL | in-context learning | 上下文学习 |
emergence | 涌现 | |
GPT | Generative Pre-trained Transformer | 生成式预训练变换模型 |
BERT | Bidirectional Encoder Representations from Transformers | 基于Transformer的双向编码器表示 |
LSTM | Long Short-Term Memory | 长短期记忆模型 (一种特殊的RNN) |
NLP | Natural Language Processing | 自然语言处理 |
AI | Artificial Intelligence | 人工智能 |
Transformer |
1.BERT:
由Google于2018年提出。BERT的核心创新是能够在上下文中同时考虑词语的左右信息,这与传统的语言模型(如单向RNN或LSTM)不同,后者只能从左到右或从右到左进行训练。
2.端到端:
- 在自然语言处理(NLP)领域中,“端到端”(End-to-End)指的是一种模型架构,其中输入数据经过一系列的自动化处理步骤,直到产生最终输出,整个过程中没有人工干预或中间的手动特征工程。
- 传统的NLP系统通常包括多个处理阶段,如分词、词性标注、命名实体识别等,每个阶段都需要人工设计特征。而端到端模型则通过深度学习或其他自动化方式,让模型从原始输入(例如文本或语音)直接学习到最终任务的输出(如分类标签、生成文本或翻译结果)。
- 例如,传统的机器翻译系统可能会先将输入句子分解为词或短语,然后逐步进行翻译。而端到端的神经机器翻译(NMT)系统会直接将一个完整的句子输入到模型中,经过训练后,模型能够从输入的源语言直接输出目标语言的翻译结果,无需手动设计特征。
- 总的来说,端到端模型具有简化流程、自动化特征学习和更高效的特点,因此在现代NLP中得到广泛应用。
3.vLLM
(1)项目简介:
vLLM is a fast and easy-to-use libaray for LLM inference and serving.
vLLM是一个开源的大模型推理加速框架,由伯克利大学的LMSYS组织开发
(2)功能特性:
①高效的内存管理:通过PageAttention技术,vLLM实现了对注意力机制中键值(KV)缓存的高效管理,减少了内存浪费
②兼容 OpenAI 的API服务器
③多硬件平台支持
(5)大语言模型 LLM
缩写 | 英文 | 中文 | 拓展 |
---|---|---|---|
REG | Retrieval-Augmented Generation | 检索增强生成 | RAG是一种结合了检索和生成的模型架构,用于提升大语言模型(LLM)的上下文理解和生成能力 |
SFT | Supervised Fine‑Tuning | 监督微调 | SFT侧重「学会怎么做」——教模型“该怎么回答” |
RFT | Reinforcement Fine‑Tuning | 强化微调 | RFT侧重「怎么做得更好」——在“会回答”的基础上,让回答更符合人类的喜好 |
(6)推荐系统
缩写 | 英文 | 中文 |
---|---|---|
SR | Sequential Recommendation | 序列推荐 |
CF | Collaborative Filtering | 协同过滤 |
RS | recommender system | 推荐系统 |
MMRSs | multimodal recommender systems | 多模态推荐系统 |
cold-start issues | 冷启动问题 | |
item | 物品、商品 | |
user | 用户 | |
behavior | 行为 |
(7)计算机图形学
缩写 | 英文 | 中文 |
---|---|---|
OpenGL | Open Graphics Library | 开放式图形库 |
GPU | Graphics Processing Unit | 图形处理器 |
context | 上下文 | |
vector | 向量 | |
matrix | 矩阵 | |
vertex | 顶点 | |
coordinate | 坐标 | |
frame of reference | 参考系 | |
texture | 纹理 | |
lighting、illumination | 光照、照明 | |
transformation | 变换 | |
render | 渲染 | |
translation | 平移 | |
scale / scaling | 缩放 | |
rotation | 旋转 | |
shear | 剪切 | |
perspective | 视角 | |
visualization | 可视化 | |
homogeneous | 同类的 | |
reflection | 映射 | |
isotropic | 各向同性的 |
(8)AI嵌入式、物联网
缩写 | 英文全称 | 中文释义 |
---|---|---|
Edge Computing | 边缘计算 | |
Federated Learning | 联邦学习 | |
Distributed System | 分布式系统 | |
AIoT | Artificial Intelligence & Internet of Things | 人工智能物联网 |
IoT | Internet of Things | 物联网 |
RTOS | real-time operating system | 实时操作系统 |
NFC | Near Field Communication | 近场通信 |
(9)人机交互
缩写 | 英文 | 中文 |
---|---|---|
UX | User Experience | 用户体验 |
UXD / UED | User Experience Design | 用户体验设计 (五个层次和关键要素) |
HCI | Human-Computer Interaction | 人机交互 |
4.就业领域
(1)职场
缩写 | 英文全称 | 中文释义 |
---|---|---|
FYI | For Your Information | 供你参考 (当你发送邮件给某人,只是想让他们知道某些信息,不需要他们采取行动、不需要回复时,就可以用FYI) |
CC | Carbon Copy | 抄送 |
all hands meeting | 公司全员大会 | |
PRD | Product Requirement Document | 产品需求文档 |
DevOps | Development and Operations | 软件开发和IT运维 |
BU | Business Unit | 业务单元, 车BU是华为智能汽车解决方案事业部的缩写 |
FIRE | Financial Independence & Retire Early | 财务独立,提早退休 |
OC | offer call | 口头offer / offer letter |
ld | leader | 上级领导 |
pl | project leader | 项目领导者、项目组长 |
PM | product manager | 产品经理 |
hc | head count | 招聘名额 |
mt | mentor | 企业导师 |
OD | Outsourcing Dispatch | 外包派遣 |
group | 集团 |
邮件:
(2)芯片
缩写 | 英文全称 | 中文释义 | 拓展 |
---|---|---|---|
Root Cause | 根本原因 | ||
errata | 勘误表 | ||
A-B-A Swap Test | 交叉测试 | 交叉测试是芯片及模块故障诊断中的“金标准”之一,通过“故障随器件走”或“不随器件走”这一下交换验证过程,帮你快速锁定故障来源。 | |
FPS | frames per second | 每秒帧数 | 是一个衡量性能、衡量画面流畅度 的重要指标,表示每秒渲染或显示的画面帧数 |
vendor | 供应商 | 公司A下订单给公司B,A是采购商(purchaser),B是供应商(vendor) | |
idle | 闲置状态 | 即不跑case和模型时 | |
RPM | Revolutions Per Minute | 每分钟转速 | 芯片板卡的风扇转速 |
I²C | Inter-Integrated Circuit | I²C总线 | 一种串行通信协议,串行通信总线,连接微控制器和外围设备,简单、灵活、可靠 |
wafer | 晶圆 | ||
die | 晶粒,单颗裸芯 | ||
chip | 芯片 | ||
validation | 验证 | 芯片验证 Chip Validation | |
lane | 通道数 | PCIe x4:四个lane,带宽是x1带宽的4倍 | |
PCIe | Peripheral Component Interconnect Express | 外设组件互连扩展 | PCI Express 或 PCIe总线 |
misc | miscellaneous | 杂项 | |
GB | Gabian | 电路设计工具 | |
efuse | 电子熔断器 | 类似ROM,写一些固定值。efuse 是一个内建的电路,在芯片制造后或使用过程中进行一些不可逆的配置或锁定操作 | |
EVB | Evaluation Board | 评估板,绿色无壳大卡 | |
PRB | Prototype Board | 原型板,带壳的小卡 | |
DSP | Digital Signal Processor | 数字信号处理器 | |
SoC | System on Chip | 片上系统 | |
AMD | Advanced Micro Devices, Inc. | 美国超威半导体公司 | |
Supermicro | 超微 | ||
overview | 概述、综述 | spec overview | |
BU | Bring Up | 芯片点亮 | |
profiling | 性能分析 | ||
IC | integrated circuit | 集成电路 | |
IP | Intellectual Property | 知识产权 | 用于芯片设计的知识产权或设计模块,可复用的IP模块 |
RISC | Reduced Instruction Set Computer | 精简指令集计算机 | |
Spec | Specification | 规格、规范 或 技术参数 | |
SiP | System in Package | 系统级封装 | |
ROM | read only memory | 只读存储器 | |
RAM | random access memory | 随机存取存储器 | |
SRAM | Static RAM | 静态随机存取存储器 | |
DRAM | Dynamic RAM | 动态随机存取存储器 | |
SDRAM | Synchronous Dynamic RAM | 同步动态RAM | |
DDR | Double Data Rate | 双倍数据速率 | |
CPU | Central Processing Unit | 中央处理单元 | |
GPU | Graphics Processing Unit | 图形处理单元 | |
NPU | Neural Network Processing Unit | 神经网络处理单元 |
(3)自动驾驶
缩写 | 英文全称 | 中文释义 |
---|---|---|
World Models | 世界模型 | |
SLAM | Simultaneous Localization and Mapping | 同步定位与建图 |
Occ | Occupancy | 占用 |
BEV | bird’s-eye view | 鸟瞰图 |
point cloud | 点云 | |
LiDAR | 激光雷达 | |
radar | 雷达 | |
time series | 时序 | |
fisheye camera | 鱼眼相机 | |
multi-source Information Fusion | 多源信息融合 | |
Autonomous Driving | 自动驾驶 |
二、数学
中文 | 单词 | 缩写 | 符号 |
---|---|---|---|
复数 | complex number | ||
实部 | real part | ||
虚部 | imaginary part | ||
矩阵 | matrix | ||
极值 | extremum | ||
极值点 | extremum point | ||
当且仅当 | if and only if | iff | |
因子 | factor | ||
约数、除数 | divisor | ||
递推数列 | recursive sequence | ||
指数 | exponent | ||
指数的 | exponential | ||
积分 | intergral | int | ∫ \int ∫ |
行列式 | determinant | det | | | |
迹 | trace | tr | |
独立同分布 | independent identically distributed | iid | |
随机变量 | random variable | r.v. |
三、机械、材料
单词 | 中文 |
---|---|
shear | 剪切 |
chrome | 铬(一种金属) Google Chrome 谷歌浏览器 |
pantograph | 受电弓 |
coupler | 车钩 |
谷歌Chrome浏览器的名称来源于"Chrome"这个单词,而不是"browser",主要是因为它所借鉴的其中一个特性——简洁和速度。"Chrome"是指一种高光泽的金属,同时也是一个简洁的单词,有助于传达速度和精致的意象。此外,"Chrome"还可以被理解为一种表面处理技术,使其具有光滑、闪亮的外观。因此,谷歌选择使用"Chrome"作为其浏览器的名称,以强调其速度、简洁和闪亮的特性。
四、医药
单词 | 中文 | 缩写 |
---|---|---|
retinol | 维A醇、维生素A1、视黄醇 | |
hyaluronic acid | 玻尿酸、透明质酸 | |
replumps fine lines | 修复细纹 | |
Hydrate | v.补水 | Hydrates intensely 强烈补水 carbohydrate n.碳水化合物 |
sunscreen | 防晒霜 | |
vitamin C | 维生素C | VC |
vitamin C essence | 维C精华 | |
serum | 精华液、乳清、血清 | |
niacinamide | 烟酰胺 | |
ceramide | 神经酰胺 | |
dermatologist | 皮肤科医生、皮肤学者 | |
encapsulated | 密封的 | |
licorice root extract | 甘草根提取物 | |
post-acne mark(s) | 痘印 | |
pore(s) | 毛孔 | |
Non-comedogenic | 不含致痘成分 | |
Directions: | 使用说明: | |
rinse | v.用清水冲洗 | |
lightweight | 轻量级、轻量级的 | |
heavyweight | 重量级、重量级的 | |
CeraVe | 适乐肤 |
五、英美计量单位
容积计量单位 | 容量 |
---|---|
liter (升) | 1L = 1000ml |
pint (品脱) | 1 pint = 0.568升 = 20液体盎司 |
quart (夸脱) | 1 quart = 2 pint |
gallon (加仑) | 1 gallon = 4 quart = 4.55L |
bushel (蒲式耳) | 1 bushel = 8 gallon |
质量计量单位 | 重量 |
---|---|
ounce (盎司) | 1 ounce = 28g |
pound (磅) | 1 pound = 453.6g |
长度计量单位 | 长度 |
---|---|
inch (英寸) | 1 inch = 2.5cm |
feet (英尺) | 1 feet = 0.35m |
mile (英里) | 1 mile = 1.6km |