降AI率不再是难题:这些免费AI工具助你高效完成写作

告诉大家一个非常残忍的答案,以后所有论文都会被查ai率的

现在论文检测又增加了一项名为“AIGC检测”的指标。例如知网、维普等平台都能检测论文AI率。

用GPT写论文虽然重复率基本不用担心,但是AI率基本都较高,所以我们一定要做好措施来降低论文AI率,保证自己的论文通过AIGC检测,这里推荐两种方法!

第一种方法是自己使用人类语言修改论文内容来降低AI检测率,比如删除逻辑性较强的词汇,增加富有情感色彩的词汇,比如重新组织语言复述过于规整的句子……这种方法过于耗费时间且低效,并不一定有用,所以都来试试第二种方法,保证有效!

那就是使用AI产品降低AI率!!!!

很多人了解到了用AI写论文,却鲜少有人知道还可以用AI工具去除论文AI痕迹,如果你知道了,那你已经打败了99%的同学。这里推荐一款专门降低论文AI痕迹的产品,链接如下↓

 笔灵去AI痕迹

传送门:ai论文降重查重 | AI痕迹检测去除 | AIGC查重网站 | 笔灵AI助手

感谢笔灵AI,让我论文完成后但毕竟是AI生成的,充满了AI的痕迹。不敢轻率地将其呈交!最终一个必须完成的任务就是清除AI的痕迹。今天就为大家带来笔灵去AI痕迹,好用到哭!走起!

点击立即使用,选择上传方式一目了然对不对~

给大家看我去痕迹前、后的论文,大家对比看一看,是不是很nice

再附一张我的论文在知网的全文检测报告,对于这个结果,我个人还是相当满意的。

除此之外再给大家推荐一些我平时写论文会用到的AI工具

笔灵AI论文

传送门:ai论文写作助手、论文生成器-笔灵AI写作

最近好多同学都在私信我“有没有AI写论文的神器?怎么用AI写论文的工具?哪些牛逼的AI软件可以辅助写作论文?用AI写的论文靠谱不靠谱呀?想用AI来帮忙写论文,但是不知道该用什么工具啊?”现在就给大家推荐笔灵AI论文,超级牛,超级好用,简单三步生成论文

Step1:选择“专业”,输入“论文题目”,选择学历,点击生成大纲,很轻松吧

Step2:根据自己需求,编辑标题和概要内容,还可以删除不需要的部分,AI写完论文后,还可以给列出材料清单,做到心中有数。

Step3: 论文完成后,并非一切如意。你敢直接交给导师吗?当然不可以!毕竟是AI生成的,充满了AI的痕迹。如果你轻率地将其呈交,简直是自取灭亡!最终一个必须完成的任务就是清除AI的痕迹。“点击一键降低”AI痕迹,即可跳转到笔灵去AI痕迹(这款AI软件本文也有介绍),笔灵AI论文是不是超级nice。

快来查收你的论文吧!

暂时无法在飞书文档外展示此内容

笔灵AI 答辩PPT

直通车:AI毕业论文写作、AI毕业设计、AI答辩PPT生成-笔灵AI写作

专业答辩PPT而生!一键上传论文,AI 在2分钟内生成答辩PPT和答辩自述稿。

功能1:一键生成答辩PPT

你只需上传一篇论文,系统便能智能识别关键点,根据答辩PPT标准和论文内容,自动安排幻灯片的顺序,设计出样式简洁、展示关键语句的PPT幻灯片,确保答辩时PPT不会不符合要求,不会出错!

功能2:自述稿与PPT完全对应

它不仅能生成PPT,还能生成一份与PPT完美结合的自述演讲稿!这份自述稿会保持与PPT内容的一致性,还会标注念到哪里切换页面。你在答辩时照着念,不会给老师在纯念PPT的感觉,完全没有问题无脑能过了。

### 如何AI 模型误差或提升准确 为了有效减少 AI 模型的错误并提升其准确,可以从以下几个方面入手: #### 数据质量改进 高质量的数据对于模型的表现至关重要。数据清洗、去噪以及去除异常值能够显著改善模型性能[^2]。此外,增加训练集规模有于模型更好地捕捉特征分布规律。 #### 特征工程优化 通过精心设计输入特征或者利用自动特征提取方法(如深度学习),可以使模型更有效地表达复杂模式。例如,在图像分类任务中采用卷积神经网络 (CNN),可以自动提取空间层次上的抽象特征。 #### 超参数调优 超参数的选择直接影响着最终结果的好坏程度。常用的策略包括网格搜索(Grid Search) 和随机搜索(Randomized Search) 。另外还可以尝试贝叶斯优化等高级算法来进行更加高效的探索过程。 #### 正则化技术应用 当面临过拟合问题时,适当引入L1/L2范数约束项可以帮缓解这一现象;Dropout作为一种有效的防止全连接层过度依赖特定节点的技术也被广泛应用在现代架构当中. #### 集成学习方法 组合多个弱分类器形成强分类器通常能带来更好的泛化能力。Bagging(Bootstrap Aggregating), Boosting及其变体XGBoost LightGBM Catboost都是实现该目标的有效手段之一. #### 使用合适的评价标准 根据不同应用场景选取恰当的评估指标非常重要。比如针对不平衡类别问题,F-score可能比单纯的accuracy更能反映实际情况;而对于连续数值预测场景,则应关注mean squared error(MSE)这样的回归损失函数表现如何[^3][^4]. ```python from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier param_grid = { 'n_estimators': [100, 200], 'max_depth' : [None, 10, 20], } rfc = RandomForestClassifier() grid_search = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ print(f"Best Parameters: {best_params}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值