原题在这里->排序数组中只出现一次的数字
给定一个只包含整数的有序数组 nums ,每个元素都会出现两次,唯有一个数只会出现一次,请找出这个唯一的数字。
示例 1:
输入: nums = [1,1,2,3,3,4,4,8,8]
输出: 2示例 2:
输入: nums = [3,3,7,7,10,11,11]
输出: 10提示:
1 <= nums.length <= 105
0 <= nums[i] <= 105进阶: 采用的方案可以在 O(log n) 时间复杂度和 O(1) 空间复杂度中运行吗?
来源:力扣(LeetCode)
方法一:异或
时间复杂度O(N)
int singleNonDuplicate(int* nums, int numsSize){
int ret = 0;
for(int i = 0;i<numsSize;i++)
{
ret^=nums[i];
}
return ret;
}
方法二:(1).二分查找(有序)(暴力版)(可忽略)
自己刚开始做的,将每种情况都列出来了,没有任何优化(笑哭)。
int singleNonDuplicate(int* nums, int numsSize) {
if (numsSize == 1)
{
return nums[0];
}
int left = 0;
int right = numsSize - 1;
int mid = (left + right) / 2;
while (left <= right)
{
//情况1:mid为0,且nums[mid]不等于nums[mid+1]
//例如:[1 2 2 3 3 4 4]
if (mid == 0 && nums[mid] != nums[mid + 1])
{
return nums[mid];
}
//情况2:mid为数组最后一个位置,且nums[mid]不等于nums[mid-1]
//例如:[0 0 1 1 2 2 3]
else if (mid == numsSize - 1 && nums[mid] != nums[mid - 1])
{
return nums[mid];
}
//情况3:mid为数组中间某位置,且于前后位置的值都不相等
//例如:[0 0 1 1 2 3 3 4 4]
else if (nums[mid] != nums[mid + 1] && nums[mid] != nums[mid - 1])
{
return nums[mid];
}
//情况4:数组中只剩下3个(开始的三个或者末尾的三个)未查找的数,且mid位于中间
//例如:[1 2 2 3 3 4 4](mid在第一个2的位置)
// [1 1 2 2 3 4 4](mid在第一个4的位置)
if (mid + 2 == numsSize)
{
break;
}
//mid为奇数(奇数个,mid,奇数个),nums[mid]=nus[mid-1],答案肯定存在于右区间
if (mid % 2 != 0 && nums[mid] == nums[mid - 1])
{
left = mid + 1;
}
//mid为奇数(奇数个,mid,奇数个),nums[mid]=nus[mid+1],答案肯定存在于左区间
else if (mid % 2 != 0 && nums[mid] == nums[mid + 1])
{
right = mid - 1;
}
//mid为偶数(偶数个,mid,偶数个),nums[mid]=nus[mid+1],答案肯定存在于右区间
else if (mid % 2 == 0 && nums[mid] == nums[mid + 1])
{
left = mid + 1;
}
//mid为偶数(偶数个,mid,偶数个),nums[mid]=nus[mid-1],答案肯定存在于左区间
else
{
right = mid - 1;
}
mid = (left + right) / 2;
}
//数组中只剩下3个数,nums[mid]和其中一个比较即可得出答案
return nums[mid] == nums[mid + 1] ? nums[mid - 1] : nums[mid + 1];
}
(2).二分查找(优化版)
int singleNonDuplicate(int* nums, int numsSize) {
int left = 0, right = numsSize - 1;
while (left < right)
{
int mid = (left + right) / 2;
//情况1:mid为奇数(奇数个,mid,奇数个),如果nums[mid] = nums[mid-1],则左区间剩余偶数个元素,则目标元素一定在右区间
//例如:[1 1 2 2 3 3 4] (mid位于第二个2的位置,即下标为3)
if (mid % 2 == 1 && nums[mid] == nums[mid - 1])
{
left = middle + 1;
}
//情况2:mid为奇数(奇数个,mid,奇数个),如果nums[mid] != nums[mid-1],则nums[mid]=nums[mid+1],则左区间剩余奇数个元素,则目标元素一定在左区间
//注:此种情况下mid位置处必不可能是目标值,因为左右区间均为奇数个元素,若mid为目标值,左右区间中会不匹配
//例如:[1 1 2 3 3 4 4] (mid位于3的位置,即下标为3)
else if (mid % 2 == 1 && nums[mid] != nums[mid - 1])
{
right = mid-1;
}
//情况3:mid为偶数(偶数个,mid,偶数个),如果nums[mid] = nums[mid-1],则左区间剩余奇数个元素,则目标元素一定在左区间
//例如:[1 2 2 3 3 4 4 5 5] (mid位于第二个3的位置,即下标为3)
else if (mid % 2 == 0 && nums[mid] == nums[mid - 1])
{
right = mid - 2;//nums[mid-1]因为已经和nums[mid]相等,所以必不可能是目标值
}
//情况4:mid为偶数(偶数个,mid,偶数个),如果nums[mid] != nums[mid+1],则mid+右区间剩余奇数个元素,则目标元素一定在右区间或mid位置
//注:此种情况mid位置处可能为目标值,所以left应调整为mid
//例如:[1 1 2 2 3 3 4 5 5] (mid位于第一个3的位置,即下标为3)
// [1 1 2 2 3 4 4 5 5] (mid位于3的位置,即下标为3)
else
{
left = mid;
}
}
return nums[left];//只剩最后一个元素时必定是目标值,返回left/right均可
}
如有一些好的解题方法,望不吝赐教~