题目:
给定一个只包含整数的有序数组 nums ,每个元素都会出现两次,唯有一个数只会出现一次,请找出这个唯一的数字。
输入: nums = [1,1,2,3,3,4,4,8,8]
输出: 2
输入: nums = [3,3,7,7,10,11,11]
输出: 10
分析:
可以将数组中的所有数字进行异或操作,最后得到的数字就是唯一出现的数字,时间复杂度为O(n)。
题目中还有一个条件没有利用上,就是数组是排序好的,因此可以换一个角度来看待这个数组,如果所有数字都出现了两次,那么将数组中的数字每两个分为一组,每组的两个数字都是相等的,但是如果在数组中添加一个只出现一次的数字,那么这个规律就会被打破。可以让数组中的数字每两个分成一组,最初的若干组的两个数字都是相同的,但遇到了只出现一次的数字之后,情况有所变化,这个只出现一次的数和后面的数字结合成一组,导致后面所有出现两次的数字都被分到两个不同的组,也就是后面所有组的两个数字都不相同,因此可见,只出现一次的数字正好是第1个两个数字不相等的分组的第1个数字。
下图就是其中重要的操作步骤,结合代码看
考虑一个特例,如果直到最后都没有找到两个数字不同的分组,那是因为只出现一次的数字在数组的尾部。如果把这个数组的每两个数字分为一组,那么每个分组中的两个数字都相同,此时数组的最后一个数字就是只出现一次的数字。
代码:
class Solution {
public int singleNonDuplicate(int[] nums) {
int left = 0;
int right = nums.length/2;
while (left<=right){
int mid = (left+right)/2;
int i = mid*2;
//i < nums.length-1为了防止数组越界,然后判断当前分组第一个数字是否和第二个数字相等
if (i < nums.length-1&&nums[i] != nums[i+1]){
if (mid == 0||nums[i-1] == nums[i-2]){
return nums[i];
}
right = mid - 1;
}else {
left = mid + 1;
}
}
return nums[nums.length - 1];
}
}