数据结构学习笔记:队列

综述

  队列是一种先进先出(FIFO)的线性表。它只允许在表的一端进行插入,而在另一端删除元素。队尾能插,对头能删

  队列的顺序存储结构,为了防止空间浪费,并不适宜像顺序表一样在插入元素时申请新地址,为了解决假溢出,循环队列也就应运而生,借助对数组下标的操作,以及修改算法,让顺序表在逻辑上完成了首尾相接。

循环队列

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define OK 1
#define ERROR 0
#define MAXQSIZE 100 

typedef int Status; 
typedef int QElemType;

typedef struct{
	QElemType *base;
	int front;
	int rear;
}SqQueue;//定义结构 


Status InitQueue(SqQueue *Q){
	Q->base = (QElemType*)malloc(MAXQSIZE * sizeof(QElemType));
	if(!Q->base) exit(OVERFLOW);
	Q->front = Q->rear = 0;
	return OK; 
}//1初始化


Status DestoryQueue(SqQueue *Q){
	free(Q->base);
	Q->base = NULL;
	Q->front = Q->rear = 0;
	return OK; 
}//2销毁队列


Status ClearQueue(SqQueue *Q){
	Q->front = Q->rear = 0;
	return OK;
}//3清空队列


Status QueueEmpty(SqQueue Q){
	if(Q.front = Q.rear) return 1;
	else return 0;
}//4判空


Status QueueLength(SqQueue Q){
	return (Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;
}//5求长度 


Status GetHead(SqQueue Q,QElemType *e){
	if(Q.front == Q.rear) return ERROR;
	*e = Q.base[Q.front];
	return OK;
}//6读取头元素


Status EnQueue(SqQueue *Q,QElemType e){
	if((Q->rear+1)%MAXQSIZE==Q->front) return ERROR;
	Q->base[Q->rear] = e;
	Q->rear = (Q->rear+1) % MAXQSIZE;
	return OK;
}//7入队


Status DeQueue(SqQueue *Q,QElemType *e){
	if(Q->front == Q->rear) return ERROR;
	*e = Q->base[Q->front];
	Q->front = (Q->front+1) % MAXQSIZE;
	return OK;
}//8出队 


int main(void){
	SqQueue Q;
	QElemType e;
	
	printf("%p\n",Q.base);
	InitQueue(&Q);//test1
	printf("%p\n",Q.base);
	
	printf("\n");
	EnQueue(&Q,111);//test7
	EnQueue(&Q,222);//test7
	EnQueue(&Q,333);//test7
	EnQueue(&Q,444);//test7
	GetHead(Q,&e);//test6
	printf("%d\n",e);

	printf("\n");
	if(QueueEmpty(Q)) printf("此队列为空\n");
	else printf("此队列非空\n");//test4
	printf("此队列现有%d个元素\n",QueueLength(Q));//test5 
	
	printf("\n");
	DeQueue(&Q,&e);//test8
	printf("%d\n",e);
	printf("此队列现有%d个元素\n",QueueLength(Q));//test5 
	
	printf("\n");
	ClearQueue(&Q);//test3
	if(QueueEmpty(Q)) printf("此队列为空\n");
	else printf("此队列非空\n");//test4
	printf("此队列现有%d个元素\n",QueueLength(Q));//test5
	
	printf("\n");
	printf("%p\n",Q.base);
	DestoryQueue(&Q);//test2
	printf("%p\n",Q.base);
	
	return 0;
} 

链队列

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define OK 1
#define ERROR 0

typedef int Status; 
typedef int QElemType;

typedef struct QNode{
	QElemType data;
	struct QNode *next;
}QNode;

typedef struct QNode *QueuePtr;

typedef struct{
	QueuePtr front;
	QueuePtr rear;
}LinkQueue;


Status InitQueue(LinkQueue *Q){
	if(!Q) return ERROR;
	Q->rear = (QNode*)malloc(sizeof(QNode));
	Q->front = Q->rear;
	if(!Q->front) exit(OVERFLOW);
	Q->front->next = NULL;
	return OK;
}//1初始化


Status DestoryQueue(LinkQueue *Q){
	while(Q->front){
		Q->rear = Q->front->next;
		free(Q->front);
		Q->front = Q->rear;
	}
	return OK;
}//2销毁队列 


Status ClearQueue(LinkQueue *Q){
	QueuePtr p;
	if(Q->front == Q->rear) return ERROR;
	while(Q->front->next){
		p = Q->front->next;
		Q->front->next = p->next;
		free(p);
	}
	Q->rear = Q->front;
	return OK;
}//3清空队列 


Status QueueEmpty(LinkQueue Q){
	if(Q.front==Q.rear) return 1;
	else return 0;
}//4判断是否为空 


Status QueueLength(LinkQueue Q){
	int i = 0 ;
	while(Q.front->next){
		i++;
		Q.front = Q.front->next;
	}
	return i;
}//5求队列长度 


Status GetHead(LinkQueue Q,QElemType* e){
	if(Q.front==Q.rear)	return ERROR;
	*e = Q.front->next->data;
	return OK;
}//6读取第一个 


Status EnQueue(LinkQueue* Q,QElemType e){
	QueuePtr p;
	p = (QNode*)malloc(sizeof(QNode));
	if(!p) exit(OVERFLOW);
	p->data = e;
	p->next = NULL;
	Q->rear->next = p;
	Q->rear = p;
	//printf("%d",Q->front->next->data);
	return OK;
}//7入队 


Status DeQueue(LinkQueue* Q,QElemType* e){
	QueuePtr p;
	if(Q->front == Q->rear) return ERROR;
	p = Q->front->next;
	*e = p->data;
	Q->front->next = p->next;
	if(Q->rear == p) Q->rear = Q->front;
	free(p);
	return OK;
}//8出队 


int main(void){
	LinkQueue Q;
	QElemType e;
	
	printf("%p\n",Q.front);
	InitQueue(&Q);//test1
	printf("%p\n",Q.front);
	
	printf("\n");
	EnQueue(&Q,111);//test7
	EnQueue(&Q,222);//test7
	EnQueue(&Q,333);//test7
	EnQueue(&Q,444);//test7
	GetHead(Q,&e);//test6
	printf("%d\n",e);

	printf("\n");
	if(QueueEmpty(Q)) printf("此队列为空\n");
	else printf("此队列非空\n");//test4
	printf("此队列现有%d个元素\n",QueueLength(Q));//test5 
	
	printf("\n");
	DeQueue(&Q,&e);//test8
	printf("%d\n",e);
	printf("此队列现有%d个元素\n",QueueLength(Q));//test5 
	
	printf("\n");
	ClearQueue(&Q);//test3
	if(QueueEmpty(Q)) printf("此队列为空\n");
	else printf("此队列非空\n");//test4
	printf("此队列现有%d个元素\n",QueueLength(Q));//test5
	
	printf("\n");
	printf("%p\n",Q.front);
	DestoryQueue(&Q);//test2
	printf("%p\n",Q.front);
	
	return 0;
} 
微信扫码订阅
UP更新不错过~
关注
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
<h3>回答1:</h3><br/>Spark SQL是Apache Spark中的一个模块,它提供了一种基于结构化数据的编程接口。Spark SQL可以让用户使用SQL语句来查询数据,也可以让用户使用DataFrame API来进行数据处理和分析。Spark SQL支持多种数据源,包括Hive、JSON、Parquet等。Spark SQL还提供了一些高级功能,如支持用户自定义函数、支持分布式机器学习算法等。Spark SQL的目标是让用户能够方便地使用Spark进行数据处理和分析,同时提供高性能和可扩展性。 <h3>回答2:</h3><br/>Spark SQL是一个基于Spark平台的关系型数据处理引擎,它支持使用SQL语句和数据框架操作数据,可以轻松处理结构化和半结构化的数据。它可以从多个数据源中读取数据,包括Hive、JSON、Parquet、ORC等。通过Spark SQL,用户可以方便地使用SQL查询语言来分析和处理数据,大大降低了开发和组织数据流的难度。 Spark SQL主要有两种执行模式:SQL查询和DataFrame操作。其中SQL查询基于Hive的SQL语法解析器,支持HiveQL中的大多数语言特性(如UDF、窗口函数等)。在执行计划生成时,Spark SQL采用了Spark的计算引擎,支持各种Spark算子的优化,以便最大程度地提高查询性能。 另一种操作模式是使用DataFrame API,它可以灵活地进行数据转换和处理,并提供了类似于SQL的语法。与SQL查询不同,DataFrame API通过静态检查和编译器优化来避免由SQL查询引起的语法错误和潜在性能问题。 除了这两种基本的操作模式外,Spark SQL还提供了一些高级特性,如嵌套查询、表和视图、共享变量等。这些特性扩展了Spark SQL的功能,使得它可以更加灵活地进行数据处理和查询。 Spark SQL是Spark的重要组成部分,它在数据存储和处理方面提供了很多便利。通过最大程度地利用Spark引擎的优势,Spark SQL能够处理海量数据,并将其转换为有用的信息。这使得Spark SQL成为实现数据分析、机器学习和人工智能的重要工具之一。 <h3>回答3:</h3><br/>Spark SQL是一种基于Spark平台的数据处理引擎,它提供了高度优化的查询引擎和优秀的支持SQL语句的API。它允许用户使用SQL语句查询来处理大规模数据集,同时仍然支持复杂数据类型和计算。Spark SQL支持数据源,包括Parquet,Avro,JSON等一系列结构化的和半结构化的数据源。 Spark SQL在历史上是一个单独的模块,在Spark 2.0之后,它已经成为Spark的核心组件之一,可以直接在Spark核心API中使用,包括作为一个RDD库或DataFrame/DataSet的API。 Spark SQL的优点如下: 1. 它可以向受过传统SQL培训的用户展示更高级别,更强大的API。 2. 它提供数据集和RDD的良好互操作性。Spark SQL可以通过未被优化的RDD/DataSet API访问同一数据。 3. 它支持Spark的执行引擎以加速查询处理。 使用Spark SQL的时候,可以根据需要选择编程语言,如Scala,Java,Python,SQL等。在Spark核心API中,Spark SQL提供了两种API来处理结构化数据: 1. DataFrame API:DataFrame是具有许多操纵数据的功能的分布式数据集,类似于数据库中的表。 2. Dataset API:Dataset是Scala和Java API,它是类型安全的,并且提供与RDD API相同的API,但比RDD具有更好的性能和可读性。 Spark SQL是Spark生态系统中重要的组成部分之一。在处理大规模数据时,使用Spark SQL可以方便地利用Spark的强大功能,提高处理效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B y u n

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值