小白攻略(一):数学建模是什么,为什么,怎样做?

一.引言

数学建模协会,建立于2020年5月份,其创立目的,在于数学建模的科普以及本校建模选手的培养选拔,属于专业类社团。

本博客撰写的目的,一来,旨在以通俗的语言、精炼的文字,更好的推动课程进展和巩固教学内容;二来,则希望通过此方式,将本协会一家之观点及经验,与诸位建模同道及网友交流分享,供诸君学习或批判。

此为本协会系列博客的首篇,之后还可创造多少,又能创造多少,皆为未知之数。数学建模是一门综合性极强的活动,身处其中,便学无止境,正所谓“路漫漫其修远兮,吾将上下而求索”,建模不息,学而不止。

最后,笔者作为协会创始人,望学弟学妹传承本协会无私奉献与精益求精的精神,在发展充实自己的同时,助我们的组织“得穷千里目,更上一层楼”。

二.数学建模是什么

1.什么是数学模型

之所以把解释数学模型放在这,怕的就是有小白像我当初一样,在还未接触时就被“数学建模”几个字给吓跑,以为这是多么高大上而遥不可及的高科技。

数学建模是个动词,动是为了建个模型。这个模型可以很难也可以很简单,诸位在义务教育阶段,便接触过一类简单的数学模型,即函数模型。

相信大家初中都做过这类应用题:

已知小明一家一年前6个月各月份的用水量,问7月份用水量可能值。

一般情况下,给出的数据都是符合一次或二次函数的,你只需要代入点坐标,求解出函数方程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值