今天阅读别人写的开源代码,学到了如何编写自己的Tokenizer,自己添加special_token,自己定义special_token的token_id。(仅适用于T5类型,使用SentencePiece模型训练出来的分词方法,对于Bert这种WordPiece的分词,不适用)
首先,我们有这样一个任务,需要有一个在基本此表的基础上,添加特殊令牌"<loc_*>"其中*从0-100。然后token_id就往后排,比如原来的此表有100个,最大的id是99,现在加了100个特殊令牌之后,此表变成了200个,"<loc_0>"的id是100,...,"<loc_99>"的id是199这样。
要自定义Tokenizer肯定是要有个父类的,如果用PretrainedTokenizer的话,里面的方法比如,vocab_size,get_vocab, _tokenize,_convert_token_to_id,_convert_id_to_token等几个关键的方法是需要根据自己的要求自定义的,其他的Tokenizer其实也是这么重写然后实现的,比如T5Tokenizer,可以去借鉴他们的写法然后改成自己的。
因为我们的任务比较简单,我们可以继承T5Tokenizer,只重写里面的部分方法。
首先,导入必要的库:
from transformers import T5Tokenizer
import sentencepiece as spm
下载所需要的预训练好的分词模型,可以去huggingface上下载,比如去https://huggingface.co/google-t5/t5-small/tree/main,里面有个叫spiece.model的文件就是分词预训练文件。不同的模型分词方法是不一样的,比如去https://huggingface.co/google-bert/bert-base-uncased/tree/main里面就找不到,原因是bert的分词是基于规则去做的,没有预训练文件,因此不适合我们这里将的Tokenizer构建方法。
下载好了之后,就可以开始编写我们的分词器类MyTokenizer了:
class MyTokenizer(T5Tokenizer):
def __init__(self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
loc_extra_ids=100,
sp_model_kwargs=None,
additional_special_tokens=[],
**kwargs):
self.vocab_file = vocab_file
self._loc_extra_ids = loc_extra_ids
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
additional_special_tokens.extend(["<loc_{}>".format(i) for i in range(0, self._loc_extra_ids)])
self.additional_special_tokens = additional_special_tokens
super(MyTokenizer, self).__init__(
vocab_file=self.vocab_file,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=self.additional_special_tokens
**kwargs
)
初始化函数里面,主要是把sentencepiece模型定义好,要添加的special token添加好,然后初始化父类,继承里面的方法和属性。
下面重写一些我们要自定义的类,其中主要是_convert_token_to_id,_convert_id_to_token,我这里顺便把vocab_size,get_vocab也重写了,不过这两个方法和T5Tokenizer里写的是一样的,主要给大家看看长啥样。
@property
def vocab_size(self):
return self.sp_model.get_piece_size() + self._loc_extra_ids
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i) : i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _convert_id_to_token(self, index):
if index < self.sp_model.get_piece_size():
token = self.sp_model.IdToPiece(index)
elif index < self.vocab_size:
loc_id = index - self.vocab_size + self._loc_extra_ids
token = f"<loc_{loc_id}>"
else:
raise
return token
def _convert_token_to_id(self, token):
if token.startswith("<loc_"):
id_index = int(token[5:-1])
return (self.vocab_size - self._loc_extra_ids) + id_index
else:
return self.sp_model.PieceToId(token)
里面self.sp_model.get_piece_size获取现有的词表的长度,self.sp_model.IdToPiece负责将现有的词的id变成token,self.sp_model.PieceToId负责将现有的token变成id。
然后实例化一个我们自己的tokenizer:
mytokenizer = MyTokenizer(path/to/speice.model)
验证一下好使不:
mytokenizer.decode(mytokenizer.encode("<loc_10>", add_special_tokens=False))
输出“<loc_10>”说明好使!