蓝桥杯--二叉树1结构与搜索树(算法笔记12)

二叉树的结构能理解,关于遍历,搜索什么的在二叉树中的实现,之前在学数据结构的时候还是没怎么懂。
二叉树系列是个大章节,看看书有十几页,这篇笔记先从二叉树的存储和遍历开始学。
二叉树的存储结构(个人概述)
    树在现实生活中是有多个分支的一种植物,由此类比到数据存储中的树,也就是说从根向上出发,会不断的有许多分支。
二叉树的概念:每一个根节点最多只有两个子节点,也就是只有左右节点两个,再把根节点的左右节点作为子根节点进行沿拓。
大致的图形如下:
对于左边,每一个根节点只存在0个或2个子节点,这种情况叫做满二叉树
对于右边,最后一层的节点必须是从左往右开始插入,且倒数第二层开始往上到根节点构成的一棵树是满二叉树,这样的二叉树叫做完全二叉树。
二叉树的存储结构在代码中一般用结构体指针来实现:
二叉树的存储结构还可以用数组表示:详情参考《漫画算法 小灰的算法之旅》二叉树章节
这里稍作解释,例如 开辟一个a[16]的数组,那么对于上图满二叉树的情况,这个数组的存放数据依次为:12345...~15,也就是说如果用数组来做,则是按照层次的方式进行存储。
 
二叉树的遍历
1.宽度优先遍历(层次优先遍历)
也就是得到数据的时候,是将树从上到下,逐层进行取数,这个取数的过程叫做遍历。
对于刚刚数组表示的方法,其实就是层次遍历的应用。
2.深度优先遍历
    ①先序遍历(根左右)
    ②中序遍历(左根右)
    ③后序遍历(左右根)
 
二叉树遍历题目
其实这个题在数据结构中有类似的,这题的通常做法是通过先序遍历和后序遍历画出这个二叉树然后再写它的后序遍历的输出。
下面来看代码实现(书中代码注释较少,我自己手打一份并配详细注释)
#include<bits/stdc++.h>
using namespace std;
const int N=1010;//最大节点数是1010
int pre[N],in [N],post[N];//先序、中序、后续
int k;//记录的节点个数
struct node{
    int value;//节点中数据的值
    node *l,*r;//左节点右节点
    node(int value=0,node *l=NULL,node *r=NULL)//默认节点的值0,左子节点右子节点为空
    :value(value),l(l),r(r){}//当前节点的初始化类比C++中类的初始化。

};
void buildtree(int l,int r,int &t, node * &root)//建树
{
    int flag=-1;//标志位
    for(int i=1;i<=r;i++)//先序遍历的第一个数是根节点
        if(in[i]==pre[t])//找到根节点在中序遍历对应的位置
        {
            flag =i; break;//如果找到了则记下中序遍历的根节点的序号
        }
    if(flag==-1)return ;//结束
    root=new node(in[flag]);//建立新节点,这里是直接将中序遍历的排列给新节点
    t++;//找第二个节点开始的树,其实这里的第二个节点是指第二层的节点
    if(flag>l)buildtree(1,flag-1,t,root->l);//建立左子树
    if(flag<r)buildtree(flag+1,r,t,root->r);//建立右子树
}
void preorder(node *root)//求先序序列 满足“根左右”的原则
{
    if(root!=NULL){//如果root节点不为空
        post[k++]=root->value;//那么输出当前节点的值
        preorder(root->l);//接着是对左边的树进行遍历
        preorder(root->r);//接着是对右边的树进行遍历
    }
}
void inorder(node *root)//求中序序列 满足“左根右”的原则
{
    if(root!=NULL){//因为是左根右的原则,所以应一直向下探索直到没有左孩子为止
        inorder(root->l);//先遍历左边
        post[k++]=root->value;//接着是根节点
        inorder(root->r);//最后是右边
        //下面的后序遍历类似
    }
}
void postorder(node *root)//求中序序列 满足“左右根”的原则
{
    if(root!=NULL){
        postorder(root->l);
        postorder(root->r);
        post[k++]=root->value;
    }
}
void remove_tree(node *root)//因为是用new的方式开辟内存所有要用delete删除树
{
    if(root==NULL)return ;
    remove_tree(root->l);
    remove_tree(root->r);
    delete root;
}
int main()
{
    int n;
    while(~scanf("%d",&n)){//先输入节点个数
        for(int i=1;i<=n;i++)scanf("%d",&pre[i]);//输入先序遍历的节点排序
        for(int j=1;j<=n;j++)scanf("%d",&in[j]);//输入中序遍历的节点排序
        node *root;//定义根节点
        int t=1;//一开始的节点层数是1
        buildtree(1,n,t,root);//从第1个节点开始建树
        k=0;//建立好树后节点个数重置不然k++会超限,即超出应有的节点个数
        postorder(root);//对建好的树进行后序遍历
        for(int i=0;i<k;i++)printf("%d%c",post[i],i==k-1?'\n':' ');
        remove_tree(root);
    }
    return 0;
}

 

 
 
二叉搜索树(BST)
 
 
 
满足这样特征的二叉树的情况主要有两种
左边这种的复杂度明显很高,右边的才比较人们心中所想
要实现这种BST的算法有很多,下面列举了一部分
后面学习的是Treap树的相关。
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

澄澈i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值