POJ 2299 Ultra-QuickSort 使用归并排序 逆序对 OJ题解

该博客详细解析了如何使用归并排序算法来解决POJ 2299题目的逆序对问题。博主首先介绍了题目背景和描述,然后讲解了思路,指出本题实质上是计算逆序对数量,并非快速排序。文中还提供了AC代码,并指出了可能的错误原因。
摘要由CSDN通过智能技术生成

一、题目背景

此题使用归并排序即可求解,需要在理解题意的基础上熟练掌握归并排序的算法。题目来源为POJ 2299,链接为:http://poj.org/problem?id=2299

二、题目描述

Problem Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence

9 1 0 5 4 ,

Ultra-QuickSort produces the output

0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

Waterloo local 2005.02.05

三、求解思路

题目翻译下意思是,存在某种特定的排序算法,通过交换两个相邻的序列元素来处理 n 个不同整数的序列,直到该序列按升序排序。例如 9 1 0 5 4 会输出为 0 1 4 5 9 ,题目中管这个方法叫“Ultra-QuickSort ”,确定 Ultra-QuickSort 需要执行多少交换操作才能对给定的输入序列进行排序。

本题可以理解成,给定无序数组,求解经过最少多少次的相邻元素的交换,可以使数组从小到大有序。注意不要被不要被“QuickSort”这个词迷惑,该题使用的方法跟快排无关,而是归并排序的变形。如下图所示,输入的一组测试用例中,5为当前测试用例里的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值