POJ 2299 Ultra-QuickSort
一、题目背景
此题使用归并排序即可求解,需要在理解题意的基础上熟练掌握归并排序的算法。题目来源为POJ 2299
,链接为:http://poj.org/problem?id=2299。
二、题目描述
Problem Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000
– the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999
, the i-th input sequence element. Input is terminated by a sequence of length n = 0
. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
Source
三、求解思路
题目翻译下意思是,存在某种特定的排序算法,通过交换两个相邻的序列元素来处理 n
个不同整数的序列,直到该序列按升序排序。例如 9 1 0 5 4
会输出为 0 1 4 5 9
,题目中管这个方法叫“Ultra-QuickSort ”,确定 Ultra-QuickSort 需要执行多少交换操作才能对给定的输入序列进行排序。
本题可以理解成,给定无序数组,求解经过最少多少次的相邻元素的交换,可以使数组从小到大有序。注意不要被不要被“QuickSort”这个词迷惑,该题使用的方法跟快排无关,而是归并排序的变形。如下图所示,输入的一组测试用例中,5
为当前测试用例里的