2012年,多伦多大学的Alex Krizhevsky等人提出了AlexNet网络,正式奠定了卷积神经网络在计算机视觉中的地位。
其AlexNet网络在2012年的ImageNet竞赛中夺冠扬名。
在之前,训练CNN模型有两个要素:数据+硬件,因此举步维艰,知道2009年诞生了ImageNet数据集,包含了1000大类物体,每类有多达数千张不同的图像。2001年GPU概念兴起,虽然GPU一直以来都是为图像处理和计算机游戏设计的。
与LeNet不同
- AlexNet包含了8层,其中5层卷积和2层全连接隐藏层,以及1个全连接输出层。
第一层卷积窗口为11x11;
第二层卷积窗口为5x5;
之后全采用窗口为3x3;
第一、第二、第五个卷积层之后都使用了最大池化层(3x3,步长为2)。
通道数也大了数倍。
- AlexNet将sigmoid激活函数简化成了ReLUctant激活函数。
公式如下:
f(x) = max(0, x)
为何采用ReLU激活函数
1、运算简单,没有幂函数;
2、ReLU激活函数在不同的参数初始化方法下使模型更容易训练。在sigmoid激活函数中,输出会无限趋近1和0的情况,这些区域它们的梯度几乎为0,使得更新部分模型参数困难。
- AlexNet引入了丢弃法(dropout),来控制全连接层的模型复杂度。
- AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。
AlexNet的网络架构
AlexNet(
(conv): Sequential(
(0): Conv2d(1, 96, kernel_size=(11, 11), stride=(4, 4))
(1): ReLU()
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU()
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU()
(8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU()
(10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU()
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fc): Sequential(
(0): Linear(in_features=6400, out_features=4096, bias=True)
(1): ReLU()
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU()
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=10, bias=True)
)
)