CNN-AlexNet

2012年,多伦多大学的Alex Krizhevsky等人提出了AlexNet网络,正式奠定了卷积神经网络在计算机视觉中的地位。
其AlexNet网络在2012年的ImageNet竞赛中夺冠扬名。

在之前,训练CNN模型有两个要素:数据+硬件,因此举步维艰,知道2009年诞生了ImageNet数据集,包含了1000大类物体,每类有多达数千张不同的图像。2001年GPU概念兴起,虽然GPU一直以来都是为图像处理和计算机游戏设计的。

与LeNet不同

  1. AlexNet包含了8层,其中5层卷积和2层全连接隐藏层,以及1个全连接输出层。

第一层卷积窗口为11x11;
第二层卷积窗口为5x5;
之后全采用窗口为3x3;
第一、第二、第五个卷积层之后都使用了最大池化层(3x3,步长为2)。
通道数也大了数倍。

  1. AlexNet将sigmoid激活函数简化成了ReLUctant激活函数。

公式如下:

f(x) = max(0, x)

为何采用ReLU激活函数
1、运算简单,没有幂函数;
2、ReLU激活函数在不同的参数初始化方法下使模型更容易训练。在sigmoid激活函数中,输出会无限趋近1和0的情况,这些区域它们的梯度几乎为0,使得更新部分模型参数困难。

  1. AlexNet引入了丢弃法(dropout),来控制全连接层的模型复杂度。
  2. AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

AlexNet的网络架构

AlexNet(
  (conv): Sequential(
    (0): Conv2d(1, 96, kernel_size=(11, 11), stride=(4, 4))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU()
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU()
    (8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU()
    (10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU()
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=6400, out_features=4096, bias=True)
    (1): ReLU()
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU()
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=10, bias=True)
  )
)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值