D. Degree Set
Stetement
You are given a sequence of n positive integers d1, d2, ..., dn(d1 < d2 < ... < dn) d 1 , d 2 , . . . , d n ( d 1 < d 2 < . . . < d n ) . Your task is to construct an undirected graph such that:
there are exactly dn + 1 d n + 1 vertices;
there are no self-loops;
there are no multiple edges;
there are no more than 106 10 6 edges;
its degree set is equal to d.
Vertices should be numbered 1 through dn + 1 d n + 1 .
Degree sequence is an array a with length equal to the number of vertices in a graph such that ai is the number of vertices adjacent to i-th vertex.
Degree set is a sorted in increasing order sequence of all distinct values from the degree sequence.
It is guaranteed that there exists such a graph that all the conditions hold, and it contains no more than 106 edges.
Print the resulting graph.
Input
The first line contains one integer n(1 ≤ n ≤ 300) n ( 1 ≤ n ≤ 300 ) — the size of the degree set.
The second line contains n integers d1, d2, ..., dn(1 ≤ di ≤ 1000,d1 < d2 < ... < dn) d 1 , d 2 , . . . , d n ( 1 ≤ d i ≤ 1000 , d 1 < d 2 < . . . < d n ) — the degree set.
Output
In the first line print one integer m(1 ≤ m ≤ 106) m ( 1 ≤ m ≤ 10 6 ) — the number of edges in the resulting graph. It is guaranteed that there exists such a graph that all the conditions hold and it contains no more than 106 10 6 edges.
Each of the next m lines should contain two integers vi v i and ui u i (1 ≤ vi, ui ≤ dn + 1) ( 1 ≤ v i , u i ≤ d n + 1 ) — the description of the i-th edge.
Examples
Input
3
2 3 4Output
8
3 1
4 2
4 5
2 5
5 1
3 2
2 1
5 3Input
3
1 2 3Output
4
1 2
1 3
1 4
2 3
题意
给出一个有n个不同的数的度数集合,让你构造出一个图使得这个图满足它恰好有 dn+1 d n + 1 个点,且无重边自环,边不超过 106 10 6 条,且这个图中所有的点的度数insert到一个set中后与输入的集合相同。
思路&&分析
首先可以确定的是,度数为d[n]的点肯定和其他所有点都连了边,那么我们假设度数为d[1]的点所有的边都是和度数为d[n]的点连的边,于是我们就有了d[1]个度数为d[n]的点,这时候相当于所有点的度数都被占去了d[1]。那么我们把d[2]~d[n-1]所有都减去d[1],于是就将他转化成了一个子问题,但是这个子问题要求点数恰好是当前的最大度数+1,也就是d[n-1]-d[1]+1。我们知道我们目前构造出来的这个图除了d[1]个度数最大的点还剩下d[n]-d[1]+1个点,那么我们只要取d[n]-d[n-1]个度数为d[1]的点就行了。剩下的全部递归下去,边界的话是没有点时return,或者只有一种度数时连完全图。
Code
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
bool Finish_read;
template<class T>inline void read(T &x){Finish_read=0;x=0;int f=1;char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;if(ch==EOF)return;ch=getchar();}while(isdigit(ch))x=x*10+ch-'0',ch=getchar();x*=f;Finish_read=1;}
template<class T>inline void print(T x){if(x/10!=0)print(x/10);putchar(x%10+'0');}
template<class T>inline void writeln(T x){if(x<0)putchar('-');x=abs(x);print(x);putchar('\n');}
template<class T>inline void write(T x){if(x<0)putchar('-');x=abs(x);print(x);}
/*================Header Template==============*/
int n,d[305],cnt,u[1000006],v[1000006];
inline void solve(int l,int r,int vl,int vr) {
if(l>r)
return;
if(l==r) {
for(int i=vr;i>vl;--i)
for(int j=vl;j<i;j++)
cnt++,u[cnt]=i,v[cnt]=j;
return;
}
int w=d[l];
for(int i=vr;i>vr-w;--i)
for(int j=vl;j<i;j++)
cnt++,u[cnt]=i,v[cnt]=j;
int nxtl=vl+d[r]-d[r-1],nxtr=vr-d[l];
for(int i=r;i>=l;--i)
d[i]-=d[l];
solve(l+1,r-1,nxtl,nxtr);
}
int main() {
read(n);
for(int i=1;i<=n;i++)
read(d[i]);
solve(1,n,1,d[n]+1);
writeln(cnt);
for(int i=1;i<=cnt;i++)
printf("%d %d\n",u[i],v[i]);
}