题意
给一个长度为 n(n≤105) n ( n ≤ 10 5 ) 的只包含小写字母的串 S S ,之后有次询问,每次询问给出一个 k k 和一个长度小于等于的字符串 T T ,求原串最短的子串中给出的字符串出现了至少次 (∑|Ti|≤105) ( ∑ | T i | ≤ 10 5 ) 。
分析
这题有一个很强的限制,就是 ∑|Ti|≤105 ∑ | T i | ≤ 10 5 ,这个限制有什么用接下来会讲到。
假设我们先不考虑中间过程的复杂度,然后我们已经求出了所有 Ti T i 在 S S 中的所有出现位置集合那么显然可以在 O(|Ri|) O ( | R i | ) 的时间内求出答案。
注意到 ∑|Ti|≤105 ∑ | T i | ≤ 10 5 ,一个询问串长度如果不超过 L L ,则长度超过的子串不超过 L−−√ L 个,长度不超过 L−−√ L 的字符串只有 L−−√ L 种长度。所以所有字符串只有 O(L−−√) O ( L ) 种长度。对于一种长度,只有 O(n) O ( n ) 种子串,所以总共可能成为某个 Ti T i 出现的子串只有 O(nL−−√) O ( n L ) 个。即 ∑|Ri|≤O(nL−−√) ∑ | R i | ≤ O ( n L ) ,所以这样的总复杂度 O(∑Ri) O ( ∑ R i ) 是可以接受的。
那么接下来的问题就是如何求出这个 Ti T i 在 S S 中出现的位置集合,同样的,枚举所有可能出现的子串,子串个数也是个,用哈希就可以判断了。
Code
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
bool Finish_read;
template<class T>inline void read(T &x){Finish_read=0;x=0;int f=1;char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;if(ch==EOF)return;ch=getchar();}while(isdigit(ch))x=x*10+ch-'0',ch=getchar();x*=f;Finish_read=1;}
template<class T>inline void print(T x){if(x/10!=0)print(x/10);putchar(x%10+'0');}
template<class T>inline void writeln(T x){if(x<0)putchar('-');x=abs(x);print(x);putchar('\n');}
template<class T>inline void write(T x){if(x<0)putchar('-');x=abs(x);print(x);}
/*================Header Template==============*/
typedef unsigned long long ull;
const ull base=233;
const int maxn=100005;
ull Pow[maxn],Hs[maxn];
char s[maxn],qr[maxn];
int n,q,k[maxn],l[maxn],len[maxn],cnt;
unordered_map<ull,int>id[maxn];
vector<int>pos[maxn];
inline ull SegHs(int l,int r) {
return Hs[r]-Hs[l-1]*Pow[r-l+1];
}
int main() {
scanf("%s",s+1);
n=strlen(s+1);
Pow[0]=1;
for(int i=1;i<=n;++i)
Pow[i]=Pow[i-1]*base,Hs[i]=Hs[i-1]*base+s[i];
// cout<<Hs[n]<<" "<<SegHs(2,n);
// for(int i=1;i<=n;++i)
// cout<<Hs[i]<<" ";
// cout<<endl;
// for(int i=1;i<=n;++i)
// for(int j=i;j<=n;++j)
// cout<<"Pos :"<<i<<" "<<j<<" "<<SegHs(i,j)<<endl;
read(q);
for(int i=1;i<=q;++i) {
read(k[i]),scanf("%s",qr+1);
ull Nhs=0;
l[i]=strlen(qr+1);
for(int j=1;j<=l[i];++j)
Nhs=Nhs*base+qr[j];
id[l[i]][Nhs]=i;
len[++cnt]=l[i];
// cout<<"!!!"<<Nhs<<endl;
}
sort(len+1,len+cnt+1);
cnt=unique(len+1,len+cnt+1)-len-1;
for(int i=1;i<=cnt;++i) {
int nowl=len[i];
for(int ql=1,qr=nowl;qr<=n;ql++,qr++) {
ull tmp=SegHs(ql,qr);
if(id[nowl].count(tmp))
pos[id[nowl][tmp]].push_back(ql);
}
}
for(int i=1;i<=q;++i) {
int ans=1e9;
for(int ql=0,qr=k[i]-1;qr<pos[i].size();++ql,++qr)
ans=min(ans,(pos[i][qr]+l[i]-1)-pos[i][ql]+1);
printf("%d\n",ans==1e9?-1:ans);
}
}