自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 pytorch scatter函数

scatter() 一般可以用来对标签进行 one-hot 编码,这就是一个典型的用标量来修改张量的一个例子example:class_num = 10batch_size = 4label = torch.LongTensor(batch_size, 1).random_() % class_num#tensor([[6],# [0],# [3],# [2]])torch.zeros(batch_size, class_num).scatter_

2021-03-08 15:43:20 203

原创 论文阅读】【元学习/小样本学习】【ICLR2019】META-LEARNING WITH DOMAIN ADAPTATION

论文阅读】【元学习/小样本学习】【ICLR2019】META-LEARNING WITH DOMAIN ADAPTATION问题阐述Meta Learning with Domain Adaptation (MLDA)实验结果问题阐述在传统的小样本学习/元学习中,meta-training阶段的task从一个task distribution τtrainτ_{train}τtrain​得到(各个task间独立同分布);meta-testing阶段的task从另一个task distribution τ

2021-02-17 16:11:50 518 1

原创 【论文阅读】【元学习/小样本学习】【ICLR2020】CROSS-DOMAIN FEW-SHOT CLASSIFICATION

【论文阅读】【元学习/小样本学习】【ICLR2020】CROSS-DOMAIN FEW-SHOT CLASSIFICATION VIA LEARNED FEATURE-WISE TRANSFORMATIONProblem formulation and motivationFEATURE-WISE TRANSFORMATION LAYERLEARNING THE FEATURE-WISE TRANSFORMATION LAYERSProblem formulation and motivationm

2021-02-10 13:55:23 698 1

原创 【论文阅读】【元学习/小样本学习】【NeurIPS2018】TADAM: Task dependent adaptive metric for improved few-shot learning

【论文阅读】【元学习/小样本学习】【NeurIPS2018】TADAM: Task dependent adaptive metric for improved few-shot learningMetric ScalingTask conditioningArchetectureAuxiliary task co-trainingMetric Scaling作者提出了metric scaling来提高小样本算法的性能。Prototypical Networks的文章中指出Euclidean dist

2021-02-10 09:10:46 438

原创 指数族分布 exponential family distribution

指数族分布 exponential family distribution指数族定义/一维高斯分布的指数族分布形式/log partition function和sufficient statistics的关系最大似然估计MLE求参数η\etaη最大熵<=>等可能/最大熵原理指数族定义/一维高斯分布的指数族分布形式/log partition function和sufficient statistics的关系最大似然估计MLE求参数η\etaη最大熵<=>等可能/最大熵原理

2021-02-07 16:46:33 306

原创 Bregman Divergence

Bregman Divergence从squared Euclidean distance (SED)说起Bregman divergences 性质Bregman Divergence iff The Mean is a Minimiser参考文献从squared Euclidean distance (SED)说起给定两个n维点,x,y∈Rnx,y \in R^nx,y∈Rn,两点之间的SED定义为:接下来,我们引入一些notion,重新定义SED:<x,y>:=∑i=1nxiyi

2021-02-06 13:33:16 716

原创 【论文阅读】【元学习/小样本学习】【CVPR2020】Boosting Few-Shot Learning With Adaptive Margin Loss

Boosting Few-Shot Learning With Adaptive Margin Loss回顾Naive Additive Margin Loss (NAML)Class-Relevant Additive Margin Loss(CRAML)Task-Relevant Additive Margin Loss (TRAML)Extension to Generalized Few-Shot LearningExperiments and Discussions总结参考文献代码(待续)论文链

2021-02-05 12:08:31 1455 2

原创 POJ 2965 The Pilots Brothers' refrigerator 组合数递归算法

POJ 2965 The Pilots Brothers’ refrigerator 组合数递归算法本题和POJ1753基本一样#include<iostream>#include <math.h>using namespace std;int a[16]={0};int result[16]={0};int p[16]={0,1,2,3,4,5,6,7,8,...

2019-12-27 19:30:44 128

原创 POJ 1423 Big Number 斯特林公式

POJ 1423 Big Number斯特林公式的运用#include <iostream>#include <math.h>#include <stdlib.h>#define PI 3.1415926using namespace std;int main(){ int n; cin>>n; int ans=...

2019-12-26 22:26:50 164

原创 POJ 1753 Flip Game 组合数递归算法

POJ 1753 Flip Game 组合数递归算法#include <iostream>#include <math.h>#include <stdlib.h>#define PI 3.1415926using namespace std;int a[16]={0};int result[16];int b[16]={0,1,2,3,4,5,...

2019-12-26 22:25:44 978

原创 Spring Boot 菜鸟笔记(三) 使用AOP处理请求

Spring Boot 菜鸟笔记(三) 使用AOP处理请求1、添加依赖 &lt;dependency&gt; &lt;groupId&gt;org.springframework.boot&lt;/groupId&gt; &lt;artifactId&gt;spring-boot-starter-aop&lt;/artifa...

2018-09-12 16:11:37 209

原创 Spring Boot 菜鸟笔记(二)

Spring Boot 菜鸟笔记(二)阻止数据提交 1、在实体类中添加控制条件 @Min(value=18,message=”未成年少女禁止入内!”)@Id @GeneratedValue private Integer id; private String cupSize; @Min(value = 18,message="未成年少女禁止入内!") ...

2018-09-12 14:48:50 301

原创 Spring Boot 菜鸟笔记(一)数据库基础

Spring Boot 菜鸟笔记(一)数据库操作(mysql)pom.xml的配置&lt;dependency&gt; &lt;groupId&gt;org.springframework.boot&lt;/groupId&gt; &lt;artifactId&gt;spring-boot-starter-data-jpa&lt;/artifactId...

2018-09-12 14:12:52 240

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除