pytorch scatter函数

scatter() 一般可以用来对标签进行 one-hot 编码,这就是一个典型的用标量来修改张量的一个例子

example:

class_num = 10
batch_size = 4
label = torch.LongTensor(batch_size, 1).random_() % class_num
#tensor([[6],
#        [0],
#        [3],
#        [2]])
torch.zeros(batch_size, class_num).scatter_(1, label, 1)
#tensor([[0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
#        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
#        [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
#        [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.]])
PyTorch Scatter是一个用于在PyTorch张量上执行scatter操作的库。scatter操作是指将输入张量的值散布到输出张量的指定位置。这个库提供了各种scatter操作,包括根据给定索引在张量上散布值、按照给定形状散布张量的值等等。 例如,使用PyTorch Scatter可以将一个大小为[batch_size, num_nodes, embedding_dim]的节点嵌入张量散布到一个大小为[batch_size, num_edges, embedding_dim]的边嵌入张量中。这可以通过使用边索引张量来实现,其中每一行包含两个节点的索引,表示这两个节点之间存在一条边。 下面是一个使用PyTorch Scatter进行scatter操作的示例: ```python import torch from torch_scatter import scatter_mean # 创建一个大小为[8, 10, 32]的张量 x = torch.randn(8, 10, 32) # 创建一个大小为[8, 10]的索引张量 index = torch.tensor([[0, 1, 2, 2, 3, 4, 4, 5, 5, 5], [0, 1, 2, 3, 3, 4, 5, 5, 6, 7]]) # 在第一维上按照索引张量散布平均值 out = scatter_mean(x, index, dim=1) print(out.shape) # 输出:torch.Size([8, 8, 32]) ``` 这个例子中,我们使用scatter_mean函数将大小为[8, 10, 32]的张量中第一维的值根据大小为[8, 10]的索引张量散布到一个大小为[8, 8, 32]的输出张量中。具体来说,对于每个索引张量中的行,函数将对应行在输入张量中的值取平均值,并将结果放置在输出张量的对应位置。结果是一个大小为[8, 8, 32]的张量,其中每个元素表示输入张量中某些节点嵌入的平均值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值