bzoj 1458 最大流

10 篇文章 0 订阅

题意:有一个M * N的棋盘,有的格子是障碍。现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵。我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵, 第j列至少放置了Cj个士兵。现在你的任务是要求使用最少个数的士兵来占领整个棋盘。


题目要求用的最少,转化一下即不用的最多

即 先放满棋盘,然后考虑最多可以拿走多少个

最大流,初始化答案为所有可以放的格子数

显然,当某一行或某一列的可以放的格子数小于需求就直接jiong掉

考虑,由于每在(x,y)放置一个士兵,对第x行和第y列都会有贡献

建图:

S -> 每一行 容量为可以放的格子数- 最少放置格子数 (即容量为第i行最多可以拿走的数量)

每一列 -> T 容量为可以放的格子数- 最少放置格子数(即容量为第j列最多可以拿走的数量)

每一个可以放的格子(i,j)  i -> j 容量为1

最终答案为 ans-maxflow

var
        n,m,l,x,y,k     :longint;
        ss,st,ans       :longint;
        i,j             :longint;
        flag            :array[0..110,0..110] of boolean;
        que,dis,last,a,b:array[0..210] of longint;
        pre,other,len   :array[0..20505] of longint;
function min(a,b:longint):longint;
begin
   if a<b then exit(a) else exit(b);
end;

procedure connect(x,y,z:longint);
begin
   inc(l);
   pre[l]:=last[x];
   last[x]:=l;
   other[l]:=y;
   len[l]:=z;
end;

function bfs:boolean;
var
        h,tl,i,p,q,cur:longint;
begin
   fillchar(dis,sizeof(dis),0);
   h:=0; tl:=1; que[1]:=ss; dis[ss]:=1;
   while (h<>tl) do
   begin
      h:=h mod 205+1;
      cur:=que[h];
      q:=last[cur];
      while (q<>0) do
      begin
         p:=other[q];
         if (dis[p]=0) and (len[q]>0) then
         begin
            dis[p]:=dis[cur]+1;
            tl:=tl mod 205+1;
            que[tl]:=p;
            if p=st then exit(true);
         end;
         q:=pre[q];
      end;
   end;
   exit(false);
end;

function dinic(x,flow:longint):longint;
var
        rest,tt,p,q:longint;
begin
   if x=st then exit(flow);
   rest:=flow;
   q:=last[x];
   while (q<>0) do
   begin
      p:=other[q];
      if (dis[p]=dis[x]+1) and (len[q]>0) and (rest>0) then
      begin
         tt:=dinic(p,min(rest,len[q]));
         dec(len[q],tt);
         inc(len[q xor 1],tt);
         dec(rest,tt);
         if rest=0 then exit(flow);
      end;
      q:=pre[q];
   end;
   if rest=flow then dis[x]:=0;
   exit(flow-rest);
end;

begin
   read(n,m,k);
   l:=1; ans:=n*m-k; ss:=n+m+1; st:=ss+1;
   for i:=1 to n do
   begin
      read(x); a[i]:=m-x;
   end;
   for i:=1 to m do
   begin
      read(x); b[i]:=n-x;
   end;
   //
   for i:=1 to k do
   begin
      read(x,y);
      dec(a[x]); dec(b[y]); flag[x,y]:=true;
      if (a[x]<0) or (b[y]<0) then
      begin
         writeln('JIONG!');exit;
      end;
   end;
   //
   for i:=1 to n do
   begin
      connect(ss,i,a[i]);
      connect(i,ss,0);
   end;
   for i:=1 to m do
   begin
      connect(n+i,st,b[i]);
      connect(st,n+i,0);
   end;
   for i:=1 to n do
     for j:=1 to m do
       if not flag[i,j] then
       begin
          connect(i,n+j,1);
          connect(n+j,i,0);
       end;
   //
   while bfs do dec(ans,dinic(ss,maxlongint div 10)); 
   writeln(ans);
end.
——by Eirlys



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值