题意:有一个M * N的棋盘,有的格子是障碍。现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵。我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵, 第j列至少放置了Cj个士兵。现在你的任务是要求使用最少个数的士兵来占领整个棋盘。
题目要求用的最少,转化一下即不用的最多
即 先放满棋盘,然后考虑最多可以拿走多少个
最大流,初始化答案为所有可以放的格子数
显然,当某一行或某一列的可以放的格子数小于需求就直接jiong掉
考虑,由于每在(x,y)放置一个士兵,对第x行和第y列都会有贡献
建图:
S -> 每一行 容量为可以放的格子数- 最少放置格子数 (即容量为第i行最多可以拿走的数量)
每一列 -> T 容量为可以放的格子数- 最少放置格子数(即容量为第j列最多可以拿走的数量)
每一个可以放的格子(i,j) i -> j 容量为1
最终答案为 ans-maxflow
var
n,m,l,x,y,k :longint;
ss,st,ans :longint;
i,j :longint;
flag :array[0..110,0..110] of boolean;
que,dis,last,a,b:array[0..210] of longint;
pre,other,len :array[0..20505] of longint;
function min(a,b:longint):longint;
begin
if a<b then exit(a) else exit(b);
end;
procedure connect(x,y,z:longint);
begin
inc(l);
pre[l]:=last[x];
last[x]:=l;
other[l]:=y;
len[l]:=z;
end;
function bfs:boolean;
var
h,tl,i,p,q,cur:longint;
begin
fillchar(dis,sizeof(dis),0);
h:=0; tl:=1; que[1]:=ss; dis[ss]:=1;
while (h<>tl) do
begin
h:=h mod 205+1;
cur:=que[h];
q:=last[cur];
while (q<>0) do
begin
p:=other[q];
if (dis[p]=0) and (len[q]>0) then
begin
dis[p]:=dis[cur]+1;
tl:=tl mod 205+1;
que[tl]:=p;
if p=st then exit(true);
end;
q:=pre[q];
end;
end;
exit(false);
end;
function dinic(x,flow:longint):longint;
var
rest,tt,p,q:longint;
begin
if x=st then exit(flow);
rest:=flow;
q:=last[x];
while (q<>0) do
begin
p:=other[q];
if (dis[p]=dis[x]+1) and (len[q]>0) and (rest>0) then
begin
tt:=dinic(p,min(rest,len[q]));
dec(len[q],tt);
inc(len[q xor 1],tt);
dec(rest,tt);
if rest=0 then exit(flow);
end;
q:=pre[q];
end;
if rest=flow then dis[x]:=0;
exit(flow-rest);
end;
begin
read(n,m,k);
l:=1; ans:=n*m-k; ss:=n+m+1; st:=ss+1;
for i:=1 to n do
begin
read(x); a[i]:=m-x;
end;
for i:=1 to m do
begin
read(x); b[i]:=n-x;
end;
//
for i:=1 to k do
begin
read(x,y);
dec(a[x]); dec(b[y]); flag[x,y]:=true;
if (a[x]<0) or (b[y]<0) then
begin
writeln('JIONG!');exit;
end;
end;
//
for i:=1 to n do
begin
connect(ss,i,a[i]);
connect(i,ss,0);
end;
for i:=1 to m do
begin
connect(n+i,st,b[i]);
connect(st,n+i,0);
end;
for i:=1 to n do
for j:=1 to m do
if not flag[i,j] then
begin
connect(i,n+j,1);
connect(n+j,i,0);
end;
//
while bfs do dec(ans,dinic(ss,maxlongint div 10));
writeln(ans);
end.
——by Eirlys