数字信号处理(一)——傅里叶分析

前言

本系列文章基于数字信号处理简明教程(第2版)郑南宁 编著整理而得,仅作个人学习用途,如有疑问,欢迎一起探讨;如有错误,敬请指正批评。

课程大纲

1、考试范围

傅里叶分析与采样信号;离散时间信号与系统分析基础;Z变换;离散傅里叶变换及其快速实现;数字滤波器的设计与实现方法;离散随机信号的统计分析基础;数字信号处理的误差分析等。

2、考试要点

(1)信号与系统的基本术语、数字信号处理的一般原理;

(2)连续时间周期信号的傅里叶级数、连续时间非周期信号的傅里叶变换、卷积、相关、抽样定理;

(3)离散时间傅里叶变换、离散时间系统、离散时间系统的频率响应

(4)Z变换、Z反变换、单边Z变换、用单边Z变换求解线性差分方程;

(5)离散傅里叶级数、离散傅里叶变换、频谱混叠、频谱泄露、栅栏效应、参数选择;

(6)FFT的基本原理、按时间抽取的FFT算法、按频域抽取的FFT算法、Chirp-Z变换;

(7)数字滤波器的基本原理、数字滤波器的基本特征;

(8)傅里叶级数展开法、窗函数设计法、FIR滤波器的实现结构;

(9)S-Z变换设计法、频率变换设计法、模拟滤波器、IIR数字滤波器的实现结构;

(10)ROM查表式乘法、滤波器的定点运算实现、IIR滤波器的查表法实现、噪声滤除;

(11)随机过程、离散随机过程的时域统计描述、离散随机过程的频域统计描述、离散线性系统对随机信号的响应;

(12)A/D转换的量化误差分析、非递归型FIR数字滤波器的量化误差分析、递归型IIR数字滤波器的量化误差分析。

3、参考书

郑南宁编著. 数字信号处理简明教程(第二版). 西安:西安交通大学出版社,2019年9月

傅里叶分析

1.1 连续时间周期信号傅里叶级数

连续时间傅里叶级数(Fourier series, FS) ,即是用大量的三角函数对一个连续时间上的周期函数进行拟合。如图所示图引自知乎电工李达康

引自知乎电工李达康

我们可将方波信号分解成无数个三角函数,通过将其相加可以得到近似的方波信号,从图中可以看到当展开到22级时,非常接近于原方波信号了。

首先,我们给定任意一个连续时间上的周期信号 x ( t ) x(t) x(t),那么对于所有的时刻 t t t都必存在一个时间 T T T,使得 x ( t ) = x ( t + T ) x(t)=x(t+T) x(t)=x(t+T)该式成立的最小正值 T 0 T_0 T0我们将其称为基波周期/基本周期。对应的我们可以计算得其基频 f 0 = 1 T 0 ,单位周期 / 秒, H z f_0=\frac{1}{T_0},单位周期/秒,Hz f0=T01,单位周期/秒,Hz而在信号与系统中,基波频率一般专指角频率,即 Ω 0 = 2 π f 0 = 2 π T 0 \Omega_0=2\pi f_0=\frac{2\pi}{T_0} Ω0=2πf0=T02π在这里我们使用大写的 Ω \Omega Ω是为了与离散时间中的角频率 ω \omega ω相区别。与其成谐波关系的信号序列中会存在不同频率的信号,他们的频率为 n Ω 0 n\Omega_0 nΩ0,频率对应的信号称为n次谐波
在信号与系统中,介绍了两个常用函数:正弦信号 x ( t ) = cos ⁡ ( Ω t ) x(t)=\cos(\Omega t) x(t)=cos(Ωt)和复指数信号 x ( t ) = e j Ω t x(t)=e^{j\Omega t} x(t)=ejΩt。由上,他们形成的基波频率为 Ω 0 \Omega_0 Ω0的信号集为
ϕ k ( t ) = cos ⁡ ( k Ω 0 t ) , k = 0 , ± 1 , ± 2 , . . . \phi_k(t)=\cos(k\Omega_0 t),k=0,\pm1,\pm2,... ϕk(t)=cos(kΩ0t),k=0,±1,±2,... ϕ k ( t ) = e j k Ω 0 t , k = 0 , ± 1 , ± 2 , . . . \phi_k(t)=e^{jk\Omega_0t},k=0,\pm1,\pm2,... ϕk(t)=ejkΩ0t,k=0,±1,±2,...我们可以将一个周期信号表示成该成谐波关系信号集的线性组合,称其为傅里叶级数。具体有两种表示方式如下

1.1.1 三角函数型傅里叶级数

给定一连续时间周期信号 x ( t ) x(t) x(t),可将其表示为具有与基波频率 Ω 0 \Omega_0 Ω0成谐波关系的无限个正弦信号的和,形式如下 x ( t ) = a 0 2 + Σ n = 1 ∞ [ a n cos ⁡ ( n Ω 0 t ) + b n sin ⁡ ( n Ω 0 t ) ] x(t)=\frac{a_0}{2}+\Sigma_{n=1}^{\infty}[a_n\cos(n\Omega_0t)+b_n\sin(n\Omega_0t)] x(t)=2a0+Σn=1[ancos(nΩ0t)+bnsin(nΩ0t)]其中 a n a_n an b n b_n bn为信号的振幅/系数,其计算的积分如下 a n = 2 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) cos ⁡ ( n Ω 0 t ) d t a_{n}=\frac{2}{T_{0}}\int_{-T_{0}/2}^{T_{0}/2}x(t)\cos(n\Omega_{0}t)\mathrm{d}t an=T02T0/2T0/2x(t)cos(nΩ0t)dt b n = 2 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) sin ⁡ ( n Ω 0 t ) d t b_n=\frac2{T_0}\int_{-T_0/2}^{T_0/2}x(t)\sin(n\Omega_0t)\mathrm{d}t bn=T02T0/2T0/2x(t)sin(nΩ0t)dt推导过程为两边同时在一个周期内对时间 t t t进行积分,经过变换后可得。这就是傅里叶级数的三角函数表示

1.1.2 指数型傅里叶级数

三角函数型表示被广泛使用,但是为了更简洁地对信号进行分析,提出复指数表示形式,在之后的讨论中,也将使用该表示法。
首先根据欧拉公式,有 cos ⁡ ( n Ω 0 t ) = e j n Ω 0 t + e − j n Ω 0 t 2 , sin ⁡ ( n Ω 0 t ) = e j n Ω 0 t − e − j n Ω 0 t 2 j \cos(n\Omega_0t)=\frac{\mathrm{e}^{\mathrm{j}n\Omega_0t}+\mathrm{e}^{-\mathrm{j}n\Omega_0t}}2,\sin(n\Omega_0t)=\frac{\mathrm{e}^{\mathrm{j}n\Omega_0t}-\mathrm{e}^{-\mathrm{j}n\Omega_0t}}{2\mathrm{j}} cos(nΩ0t)=2ejnΩ0t+ejnΩ0t,sin(nΩ0t)=2jejnΩ0tejnΩ0t sin ⁡ \sin sin cos ⁡ \cos cos的表达式代入三角形傅里叶级数表达式中可得 x ( t ) = a 0 2 + Σ n = 1 ∞ a n − j b n 2 e j n Ω 0 t + Σ n = 1 ∞ a n + j b n 2 e − j n Ω 0 t x(t)=\frac{a_0}{2}+\Sigma_{n=1}^\infty\frac{a_n-jb_n}{2}e^{jn\Omega_0t}+\Sigma_{n=1}^\infty\frac{a_n+jb_n}{2}e^{-jn\Omega_0t} x(t)=2a0+Σn=12anjbnejnΩ0t+Σn=12an+jbnejnΩ0t c n = a n − j b n 2 c_n=\frac{a_n-jb_n}{2} cn=2anjbn c n ∗ = a n + j b n 2 c_n^*=\frac{a_n+jb_n}{2} cn=2an+jbn,有 a − n = a n a_{-n}=a_n an=an b − n = − b n b_{-n}=-b_n bn=bn c n ∗ = c − n c_n^*=c_{-n} cn=cn(将 n n n − n -n n分别代入 a n , b n a_n,b_n an,bn的表达式即可得出)
c n , c n ∗ c_n,c_n^* cn,cn代入 x ( t ) x(t) x(t) x ( t ) = c 0 + Σ n = 1 ∞ c n e j n Ω 0 t + Σ n = 1 ∞ c n ∗ e − j n Ω 0 t = c 0 + Σ n = 1 ∞ c n e j n Ω 0 t + Σ n = 1 ∞ c − n e − j n Ω 0 t = c 0 + Σ n = 1 ∞ c n e j n Ω 0 t + Σ n = − ∞ − 1 c n e j n Ω 0 t = Σ n = − ∞ ∞ c n e j n Ω 0 t = Σ n = − ∞ ∞ X ( n Ω 0 ) e j n Ω 0 t \begin{aligned}x(t) &=c_0+\Sigma_{n=1}^\infty c_ne^{jn\Omega_0t}+\Sigma_{n=1}^\infty c_n^*e^{-jn\Omega_0t} \\&=c_0+\Sigma_{n=1}^\infty c_ne^{jn\Omega_0t}+\Sigma_{n=1}^\infty c_{-n}e^{-jn\Omega_0t} \\&=c_0+\Sigma_{n=1}^\infty c_ne^{jn\Omega_0t}+\Sigma_{n=-\infty}^{-1} c_{n}e^{jn\Omega_0t} \\&=\Sigma_{n=-\infty}^{\infty}c_ne^{jn\Omega_0t}=\Sigma_{n=-\infty}^{\infty}\Chi(n\Omega_0)e^{jn\Omega_0t} \end{aligned} x(t)=c0+Σn=1cnejnΩ0t+Σn=1cnejnΩ0t=c0+Σn=1cnejnΩ0t+Σn=1cnejnΩ0t=c0+Σn=1cnejnΩ0t+Σn=1cnejnΩ0t=Σn=cnejnΩ0t=Σn=X(nΩ0)ejnΩ0t如同上述的三角函数表示一样,这里的 c n c_n cn就是复指数信号对应的系数/振幅,我们将其记作 X ( n Ω 0 ) \Chi(n\Omega_0) X(nΩ0)。上式中, n = ± N n=\pm N n=±N时对应的两个分量称为 N N N次谐波分量,特别的,当 n = 0 n=0 n=0时,称为直流分量;当 n = ± 1 n=\pm 1 n=±1时,也可称为基波分量。
同样的,复指数信号对应系数的计算积分如下 X ( n Ω 0 ) = c n = a n − j b n 2 = 1 2 2 T 0 ∫ T 0 x ( t ) [ cos ⁡ ( n Ω 0 t ) − j sin ⁡ ( n Ω 0 t ) ] d t = 1 T 0 ∫ T 0 x ( t ) e − j n Ω 0 t d t , n = 0 , ± 1 , ± 2 , . . . \begin{aligned}\Chi(n\Omega_0)&=c_n=\frac{a_n-jb_n}{2}\\&=\frac{1}{2}\frac{2}{T_0}\int_{T_0}x(t)[\cos(n\Omega_0t)-j\sin(n\Omega_0t)]dt\\&=\frac{1}{T_0}\int_{T_0}x(t)e^{-jn\Omega_0t}dt,n=0,\pm 1,\pm 2,...\end{aligned} X(nΩ0)=cn=2anjbn=21T02T0x(t)[cos(nΩ0t)jsin(nΩ0t)]dt=T01T0x(t)ejnΩ0tdt,n=0,±1,±2,...系数通常称为 x ( t ) x(t) x(t)傅里叶级数系数(简称傅里叶系数)或频谱系数
可以发现在时域上的周期信号对其进行傅里叶变换至频域后,其在频域的信号变成了离散的,反过来也成立。即时域的周期 ⇔ \Leftrightarrow 频域的离散
值得一提的是,将连续周期信号展开为傅里叶级数形式通常要满足三大条件

  1. 在一个周期内信号绝对可积
  2. 在一个周期内有有限个不连续点,且不连续点函数值有限
  3. 在一个周期内有有限个最大最小值

只不过,我们在实际中应用的信号几乎都满足以上条件,所以可以直接使用

1.1.3 傅里叶级数的波形分解

我们利用正弦信号或者复指数信号通过线性组合可以拟合连续周期信号。对于这些信号,我们不仅需要考虑其振幅也要考虑他们的相位。观察之前计算得到的 X ( n Ω 0 ) \Chi(n\Omega_0) X(nΩ0)可以发现,他是关于 n Ω 0 n\Omega _0 nΩ0的复函数,也就是说他既保存了系数对应信号的幅度信息,也保存了相位信息。写成复数形式如下 X ( n Ω 0 ) = ∣ X ( n Ω 0 ) ∣ e j θ n \Chi(n\Omega_0)=|\Chi(n\Omega_0)|e^{j\theta_n} X(nΩ0)=X(nΩ0)ejθn上式中, X ( n Ω 0 ) \Chi(n\Omega_0) X(nΩ0)称为信号的频谱, ∣ X ( n Ω 0 ) ∣ |\Chi(n\Omega_0)| X(nΩ0)为频谱的幅度,称为幅频特性; θ n \theta_n θn为相位谱,称为相频特性。
我们使用Matlab对郑书例题1.1进行验证。

%   绘制一个f=5Hz,T0=0.2s,omega0=10pi的锯齿波 
t=0:0.001:1;
f=sawtooth(2*pi* 5 *(t+0.1));
plot(t,f)
%  分别展开到一二三阶
f1 = 1/(1*pi)*(exp(1i*(0.5*pi+(-10*pi)*t))+exp(1i*(-0.5*pi+(10*pi)*t)));
f2 = 1/(2*pi)*(exp(1i*(-0.5*pi+(-20*pi)*t))+exp(1i*(0.5*pi+(20*pi)*t)));
f3 = 1/(3*pi)*(exp(1i*(0.5*pi+(-30*pi)*t))+exp(1i*(-0.5*pi+(30*pi)*t)));
f4 = 1/(4*pi)*(exp(1i*(-0.5*pi+(-40*pi)*t))+exp(1i*(0.5*pi+(40*pi)*t)));
f5 = 1/(5*pi)*(exp(1i*(0.5*pi+(-50*pi)*t))+exp(1i*(-0.5*pi+(50*pi)*t)));
f6 = 1/(6*pi)*(exp(1i*(-0.5*pi+(-60*pi)*t))+exp(1i*(0.5*pi+(60*pi)*t)));
plot(t,f1+f2)
plot(t,f1+f2+f3+f4)
plot(t,f1+f2+f3+f4+f5+f6)

结果如图
在这里插入图片描述

1.2 非周期信号的连续时间傅里叶变换

上节中,我们讨论了连续时间周期信号的傅里叶级数,但是实际生产生活中,很多信号都是非周期的,我们希望能找出类似的表示方法对非周期信号拟合,即如何求解非周期信号的频谱。其核心思想就是极限思想,即将非周期信号视为周期无穷大的周期信号。

首先我们给定一个非周期信号 x ( t ) x(t) x(t),在 ∣ t ∣ > T 1 |t|>T_1 t>T1时, x ( t ) = 0 x(t)=0 x(t)=0,如图所示在这里插入图片描述
我们对其以周期 T ≥ 2 T 1 T\geq2T_1 T2T1对其进行延拓。得到延拓信号 x T ( t ) x_T(t) xT(t)如图所示
在这里插入图片描述
我们逐渐增大延拓的周期 T T T,这些信号会在时间轴上离得越来越远,当 T T T足够大至趋向 ∞ \infty 时,可以认为在有限时间内, x T ( t ) = x ( t ) x_T(t)=x(t) xT(t)=x(t)。使用数学语言来描述就是 x T ( t ) = Σ n = − ∞ ∞ x ( t + n T ) x_T(t)=\Sigma_{n=-\infty}^{\infty}x(t+nT) xT(t)=Σn=x(t+nT) T → ∞ 时 T\to\infty时 T x ( t ) = lim ⁡ T → ∞ x T ( t ) x(t)=\lim_{T\to\infty}x_T(t) x(t)=TlimxT(t)对于周期的 x T ( t ) x_T(t) xT(t)我们采用傅里叶级数对其进行展开,进而可以对非周期的 x ( t ) x(t) x(t)进行展开。
首先我们考虑 T → ∞ T\to\infty T情况下的 x T ( t ) x_T(t) xT(t)的傅里叶级数,即 x T ( t ) = Σ n = − ∞ ∞ X ( n Ω 0 ) e j n Ω 0 t x_T(t)=\Sigma_{n=-\infty}^{\infty}X(n\Omega_0)e^{jn\Omega_0t} xT(t)=Σn=X(nΩ0)ejnΩ0t,取积分区间为 − T 2 -\frac{T}{2} 2T T 2 \frac{T}{2} 2T X ( n Ω 0 ) = 1 T ∫ − T 2 T 2 x T ( t ) e − j n Ω 0 t d t X(n\Omega_0)=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x_T(t)e^{-jn\Omega_0t}dt X(nΩ0)=T12T2TxT(t)ejnΩ0tdt X ( n Ω 0 ) X(n\Omega_0) X(nΩ0)代入 x T ( t ) x_T(t) xT(t)中得 x t ( t ) = Σ n = − ∞ ∞ [ 1 T ∫ − T 2 T 2 x t ( t ) e − j n Ω 0 t d t ] e j n Ω 0 t = Σ n = − ∞ ∞ [ Ω 0 2 π ∫ − T 2 T 2 x t ( t ) e − j n Ω 0 t d t ] e j n Ω 0 t ,令 T → ∞ , Ω 0 → d Ω = 1 2 π ∫ − ∞ ∞ [ ∫ − ∞ ∞ x ( t ) e − j Ω t d t ] e j Ω t d Ω \begin{aligned} x_t(t)&=\Sigma_{n=-\infty}^{\infty}[\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x_t(t)e^{-jn\Omega_0t}dt]e^{jn\Omega_0t} \\&=\Sigma_{n=-\infty}^{\infty}[\frac{\Omega_0}{2\pi}\int_{-\frac{T}{2}}^{\frac{T}{2}}x_t(t)e^{-jn\Omega_0t}dt]e^{jn\Omega_0t},令T\to\infty,\Omega_0\to d\Omega \\&=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt]e^{j\Omega t}d\Omega\end{aligned} xt(t)=Σn=[T12T2Txt(t)ejnΩ0tdt]ejnΩ0t=Σn=[2πΩ02T2Txt(t)ejnΩ0tdt]ejnΩ0t,令T,Ω0dΩ=2π1[x(t)ejΩtdt]ejΩtdΩ由于 T → ∞ T\to\infty T时, x ( t ) = x T ( t ) x(t)=x_T(t) x(t)=xT(t),即 x ( t ) = 1 2 π ∫ − ∞ ∞ [ ∫ − ∞ ∞ x ( t ) e − j Ω t d t ] e j Ω t d Ω x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt]e^{j\Omega t}d\Omega x(t)=2π1[x(t)ejΩtdt]ejΩtdΩ我们成功地表示出了非周期连续信号的“展开”
通常将方括号内积分项记作 X ( j Ω ) X(j\Omega) X(jΩ),即 X ( j Ω ) = ∫ − ∞ ∞ x ( t ) e − j Ω t d t X(j\Omega)=\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt X(jΩ)=x(t)ejΩtdt
上式即连续时间信号的的傅里叶变换(The Continuous-Time Fourier Transform,CTFT), X ( j Ω ) X(j\Omega) X(jΩ)称为信号的频谱
X ( j Ω ) X(j\Omega) X(jΩ)代回 x ( t ) x(t) x(t) x ( t ) = 1 2 π ∫ − ∞ ∞ X ( j Ω ) e j Ω t d Ω x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega x(t)=2π1X(jΩ)ejΩtdΩ将其称为傅里叶反变换,他表示连续时间信号可分解为无穷多频率信号的和。上面两式共同构成连续时间的傅里叶变换对,搭建起了时域空间和频域空间的桥梁。通常表示为 X ( j Ω ) = F [ x ( t ) ] , x ( t ) = F − 1 [ X ( j Ω ) ] X(j\Omega)=F[x(t)],x(t)=F^{-1}[X(j\Omega)] X(jΩ)=F[x(t)],x(t)=F1[X(jΩ)] x ( t ) ↔ X ( j Ω ) x(t)\leftrightarrow X(j\Omega) x(t)X(jΩ)我们知道 X ( j Ω ) X(j\Omega) X(jΩ)是一个复数,将其可以写成 X ( j Ω ) = R e [ X ( j Ω ) ] + j I m [ X ( j Ω ) ] X(j\Omega) =Re[X(j\Omega)]+jIm[X(j\Omega)] X(jΩ)=Re[X(jΩ)]+jIm[X(jΩ)] e j Ω t e^{j\Omega t} ejΩt欧拉展开等于 cos ⁡ ( Ω t ) + j sin ⁡ ( Ω t ) \cos(\Omega t )+j\sin(\Omega t) cos(Ωt)+jsin(Ωt),当 x ( t ) x(t) x(t)为实函数时,便有 R e [ X ( j Ω ) ] = ∫ − ∞ ∞ x ( t ) cos ⁡ ( Ω t ) d t Re[X(j\Omega)]=\int_{-\infty}^{\infty}x(t)\cos(\Omega t)dt Re[X(jΩ)]=x(t)cos(Ωt)dt I m [ X ( j Ω ) ] = − ∫ − ∞ ∞ x ( t ) sin ⁡ ( Ω t ) d t Im[X(j\Omega)]=-\int_{-\infty}^{\infty}x(t)\sin(\Omega t)dt Im[X(jΩ)]=x(t)sin(Ωt)dt显然实部为偶,虚部为奇,那么有 R e [ X ( j Ω ) ] = R e [ X ( − j Ω ) ] Re[X(j\Omega)]=Re[X(-j\Omega)] Re[X(jΩ)]=Re[X(jΩ)], I m [ X ( j Ω ) ] = − I m [ X ( − j Ω ) ] Im[X(j\Omega)]=-Im[X(-j\Omega)] Im[X(jΩ)]=Im[X(jΩ)], X ∗ ( j Ω ) = X ( − j Ω ) X^*(j\Omega)=X(-j\Omega) X(jΩ)=X(jΩ)
同傅里叶级数一样,傅里叶变换的频谱也有对应的幅度谱和相位谱。表示如下 X ( j Ω ) = ∣ X ( j Ω ) ∣ e j θ ( Ω ) X(j\Omega)=|X(j\Omega)|e^{j\theta(\Omega)} X(jΩ)=X(jΩ)ejθ(Ω)其中 ∣ X ( j Ω ) ∣ |X(j\Omega)| X(jΩ)为幅度谱, e j θ ( Ω ) e^{j\theta(\Omega)} ejθ(Ω)为相位谱。其具有如下关系 X ( j Ω ) = R e 2 [ X ( j Ω ) ] + I m 2 [ X ( j Ω ) ] X(j\Omega)=\sqrt{Re^2[X(j\Omega)]+Im^2[X(j\Omega)]} X(jΩ)=Re2[X(jΩ)]+Im2[X(jΩ)] θ ( Ω ) = arctan ⁡ I m [ X ( j Ω ) ] R e [ X ( j Ω ) ] \theta(\Omega)=\arctan\frac{Im[X(j\Omega)]}{Re[X(j\Omega)]} θ(Ω)=arctanRe[X(jΩ)]Im[X(jΩ)]可以发现在时域上的非周期信号对其进行傅里叶变换至频域后,其在频域的信号变成了连续的,即时域的非周期 ⇔ \Leftrightarrow 频域的连续
反变换与正变换类似,因此我们也可类推出频域的周期 ⇔ \Leftrightarrow 时域的离散,频域的非周期 ⇔ \Leftrightarrow 时域的连续
同样的,非周期信号 x ( t ) x(t) x(t)仍需满足狄利克雷条件,即

1.x(t)在无限区间内绝对可积,即 ∫ − ∞ ∞ ∣ x ( t ) ∣ d t < ∞ \int_{-\infty}^{\infty}|x(t)|dt<\infty x(t)dt<
2.在任意有限区间, x ( t ) x(t) x(t)仅有有限个间断点,且值有限
3.在任意有限区间, x ( t ) x(t) x(t)只有有限个最大最小值

郑书在此强调,傅里叶变换是通过无限的正弦(或指数)表示信号的一种方式,正是对这两节的精辟总结

1.3 连续时间傅里叶变换的性质

1.3.1 线性

x ( t ) ⇔ X ( j Ω ) , y ( t ) ⇔ Y ( j Ω ) x(t)\Leftrightarrow X(j\Omega),y(t)\Leftrightarrow Y(j\Omega) x(t)X(jΩ),y(t)Y(jΩ),则对任意常数 a 1 , a 2 a_1,a_2 a1,a2 a 1 x ( t ) + a 2 y ( t ) ⇔ a 1 X ( j Ω ) + a 2 Y ( j Ω ) a_1x(t)+a_2y(t)\Leftrightarrow a_1X(j\Omega)+a_2Y(j\Omega) a1x(t)+a2y(t)a1X(jΩ)+a2Y(jΩ)
证明: ∫ − ∞ ∞ [ a 1 x ( t ) + a 2 y ( t ) ] e − j Ω t d t = ∫ − ∞ ∞ a 1 x ( t ) e − j Ω t d t + ∫ − ∞ ∞ a 2 y ( t ) e − j Ω t d t = a 1 X ( j Ω ) + a 2 Y ( j Ω ) \int_{-\infty}^{\infty}[a_1x(t)+a_2y(t)]e^{-j\Omega t}dt=\int_{-\infty}^{\infty}a_1x(t)e^{-j\Omega t}dt+\int_{-\infty}^{\infty}a_2y(t)e^{-j\Omega t}dt=a_1X(j\Omega)+a_2Y(j\Omega) [a1x(t)+a2y(t)]ejΩtdt=a1x(t)ejΩtdt+a2y(t)ejΩtdt=a1X(jΩ)+a2Y(jΩ)该性质表明时域信号的叠加对应于频域信号的叠加

1.3.2 对偶性(互易性)

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 X ( j t ) ⇔ 2 π x ( − Ω ) X(jt)\Leftrightarrow 2\pi x(-\Omega) X(jt)2πx(Ω)证明:从傅里叶反变换出发,有 x ( − t ) = 1 2 π ∫ ∞ ∞ X ( j Ω ) e − j Ω t d Ω x(-t)=\frac{1}{2\pi}\int_{\infty}^{\infty}X(j\Omega)e^{-j\Omega t}d\Omega x(t)=2π1X(jΩ)ejΩtdΩ将左右两边变量 t , Ω t,\Omega t,Ω互换有 2 π x ( − Ω ) = ∫ ∞ ∞ X ( j t ) e − j Ω t d t 2\pi x(-\Omega)=\int_{\infty}^\infty X(jt)e^{-j\Omega t}dt 2πx(Ω)=X(jt)ejΩtdt右边为傅里叶变换形式,左右换一下即 X ( j t ) ⇔ 2 π x ( − Ω ) X(jt)\Leftrightarrow 2\pi x(-\Omega) X(jt)2πx(Ω)该性质表明如果时域上长的像A的信号频域上长得像B,那么时域上长得像B的信号频域上长得就会像A

1.3.3 时间尺度变换性质

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 x ( k t ) ⇔ 1 ∣ k ∣ X ( j Ω k ) x(kt)\Leftrightarrow \frac{1}{|k|}X(j\frac{\Omega}{k}) x(kt)k1X(jkΩ)证明: F [ x ( k t ) ] = ∫ − ∞ ∞ x ( k t ) e − j Ω t d t F[x(kt)]=\int_{-\infty}^{\infty}x(kt)e^{-j\Omega t}dt F[x(kt)]=x(kt)ejΩtdt τ = k t \tau=kt τ=kt,有 F [ x ( k t ) ] = { 1 k ∫ − ∞ ∞ x ( τ ) e − j Ω k τ d τ , a > 0 − 1 k ∫ − ∞ ∞ x ( τ ) e − j Ω k τ d τ , a < 0 = 1 ∣ k ∣ X ( j Ω k ) F[x(kt)]= \begin{equation} \left\{ \begin{aligned} \nonumber \frac{1}{k}\int_{-\infty}^{\infty}x(\tau)e^{-j\frac{\Omega}{k}\tau}d\tau,a>0\\ -\frac{1}{k}\int_{-\infty}^{\infty}x(\tau)e^{-j\frac{\Omega}{k}\tau}d\tau,a<0\\ \end{aligned} \right. \end{equation}=\frac{1}{|k|}X(j\frac{\Omega}{k}) F[x(kt)]= k1x(τ)ejkΩτdτ,a>0k1x(τ)ejkΩτdτ,a<0=k1X(jkΩ)该性质表明时域的压缩(拉伸)对应频域的拉伸(压缩),我们在日常中快速播放时会感到声音变尖就是这个原因

1.3.4 频率尺度变换性质

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 1 ∣ k ∣ x ( t k ) ⇔ X ( j k Ω ) \frac{1}{|k|}x(\frac{t}{k})\Leftrightarrow X(jk\Omega) k1x(kt)X(jkΩ)证明:与1.3.3节证明类似

1.3.5 时移性质

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 x ( t − t 0 ) ⇔ e − j Ω t X ( j Ω ) x(t-t_0)\Leftrightarrow e^{-j\Omega t}X(j\Omega) x(tt0)ejΩtX(jΩ)证明: F [ x ( t − t 0 ) ] = ∫ − ∞ ∞ x ( t − t 0 ) e − j Ω t d t = ∫ − ∞ ∞ x ( τ ) e − j Ω ( τ + t 0 ) d τ = e − j Ω t 0 ∫ − ∞ ∞ x ( τ ) e − j Ω τ d τ = e − j Ω t 0 X ( j Ω ) F[x(t-t_0)]=\int_{-\infty}^{\infty}x(t-t_0)e^{-j\Omega t}dt=\int_{-\infty}^{\infty}x(\tau)e^{-j\Omega(\tau+t_0)}d\tau=e^{-j\Omega t_0}\int_{-\infty}^{\infty}x(\tau)e^{-j\Omega\tau}d\tau=e^{-j\Omega t_0}X(j\Omega) F[x(tt0)]=x(tt0)ejΩtdt=x(τ)ejΩ(τ+t0)dτ=ejΩt0x(τ)ejΩτdτ=ejΩt0X(jΩ)该性质表明时域的移位会引起相移,但不会改变傅里叶变换的模

1.3.6 频移性质(调制特性)

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 x ( t ) e j Ω t ⇔ X [ j ( Ω − Ω 0 ) ] x(t)e^{j\Omega t}\Leftrightarrow X[j(\Omega-\Omega_0)] x(t)ejΩtX[j(ΩΩ0)]证明:从傅里叶反变换出发,与1.3.5类似

1.3.7 共轭与共轭对称性质

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 x ∗ ( t ) ⇔ X ∗ ( − j Ω ) x^*(t)\Leftrightarrow X^*(-j\Omega) x(t)X(jΩ)证明:对傅里叶变换取共轭即证
我们由共轭性质可以进一步得出,若 x ( t ) x(t) x(t)为实函数,则 X ( j Ω ) X(j\Omega) X(jΩ)有共轭对称性质,即 X ( − j Ω ) ⇔ X ∗ ( j Ω ) X(-j\Omega)\Leftrightarrow X^*(j\Omega) X(jΩ)X(jΩ) X ( j Ω ) X(j\Omega) X(jΩ)表示为笛卡尔坐标形式 X ( j Ω ) = R e [ X ( j Ω ) ] + j I m [ X ( j Ω ) ] X(j\Omega)=Re[X(j\Omega)]+jIm[X(j\Omega)] X(jΩ)=Re[X(jΩ)]+jIm[X(jΩ)]可发现,其实部为频率的偶函数,虚部为频率的奇函数
X ( j Ω ) X(j\Omega) X(jΩ)表示为极坐标形式 X ( j Ω ) = ∣ X ( j Ω ) ∣ e j ∠ X ( j Ω ) X(j\Omega)=|X(j\Omega)|e^{j\angle X(j\Omega)} X(jΩ)=X(jΩ)ejX(jΩ)可发现,幅度谱是频率的偶函数,频率谱是频率的奇函数

1.3.8 微分性质

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 d x ( t ) d t ⇔ j Ω X ( j Ω ) \frac{dx(t)}{dt}\Leftrightarrow j\Omega X(j\Omega) dtdx(t)jΩX(jΩ)证明:对傅里叶反变换两边微分即证
同样的,我们可以得到频域微分性质 ( − j t ) x ( t ) ⇔ d X ( j Ω ) d Ω (-jt)x(t)\Leftrightarrow \frac{dX(j\Omega)}{d\Omega} (jt)x(t)dΩdX(jΩ)

1.3.9 积分性质

x ( t ) ⇔ X ( j Ω ) x(t)\Leftrightarrow X(j\Omega) x(t)X(jΩ),则有 x ( − 1 ) ( t ) = ∫ − ∞ t x ( τ ) d τ ⇔ π X ( 0 ) δ ( Ω ) + 1 j Ω X ( j Ω ) x^{(-1)}(t)=\int_{-\infty}^{t}x(\tau)d\tau\Leftrightarrow \pi X(0)\delta(\Omega)+\frac{1}{j\Omega}X(j\Omega) x(1)(t)=tx(τ)dτπX(0)δ(Ω)+jΩ1X(jΩ)证明: ∫ − ∞ ∞ [ ∫ − ∞ t x ( τ ) d τ ] e − j Ω t d t = ∫ − ∞ ∞ [ ∫ − ∞ ∞ x ( τ ) u ( t − τ ) d τ ] e − j Ω t d t (将变上限积分表示为与阶跃的卷积) = ∫ − ∞ ∞ x ( τ ) [ ∫ − ∞ ∞ u ( t − τ ) e − j Ω t d t ] d τ = ∫ − ∞ ∞ x ( τ ) [ π δ ( Ω ) + 1 j Ω ] e − j Ω τ d τ (时移阶跃的傅里叶变换) = ( π δ ( Ω ) + 1 j Ω ) ∫ − ∞ ∞ x ( τ ) e − j Ω τ d τ = ( π δ ( Ω ) + 1 j Ω ) X ( j Ω ) = π X ( 0 ) δ ( Ω ) + 1 j Ω X ( j Ω ) \begin{aligned} \int_{-\infty}^{\infty}[\int_{-\infty}^tx(\tau)d\tau]e^{-j\Omega t}dt &=\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}x(\tau)u(t-\tau)d\tau]e^{-j\Omega t}dt(将变上限积分表示为与阶跃的卷积) \\ &=\int_{-\infty}^{\infty}x(\tau)[\int_{-\infty}^{\infty}u(t-\tau)e^{-j\Omega t}dt]d\tau \\ &=\int_{-\infty}^{\infty}x(\tau)[\pi\delta(\Omega)+\frac{1}{j\Omega}]e^{-j\Omega\tau}d\tau(时移阶跃的傅里叶变换)\\ &=(\pi\delta(\Omega)+\frac{1}{j\Omega})\int_{-\infty}^{\infty}x(\tau)e^{-j\Omega\tau}d\tau\\ &=(\pi\delta(\Omega)+\frac{1}{j\Omega})X(j\Omega)\\ &=\pi X(0)\delta(\Omega)+\frac{1}{j\Omega}X(j\Omega) \end{aligned} [tx(τ)dτ]ejΩtdt=[x(τ)u(tτ)dτ]ejΩtdt(将变上限积分表示为与阶跃的卷积)=x(τ)[u(tτ)ejΩtdt]dτ=x(τ)[πδ(Ω)+jΩ1]ejΩτdτ(时移阶跃的傅里叶变换)=(πδ(Ω)+jΩ1)x(τ)ejΩτdτ=(πδ(Ω)+jΩ1)X(jΩ)=πX(0)δ(Ω)+jΩ1X(jΩ)频域积分类似的写法证法,但是用的不多,不赘述了

1.4 卷积

1.4.1 卷积定义

已知两个信号 x ( t ) x(t) x(t) h ( t ) h(t) h(t),他们的卷积表示为 y ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ = x ( t ) ∗ h ( t ) y(t)=\int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau=x(t)*h(t) y(t)=x(τ)h(tτ)dτ=x(t)h(t)通过卷积,我们可以求出一个输入通过一个系统后的输出

1.4.2 卷积定理

x ( t ) ⇔ X ( j Ω ) , h ( t ) ⇔ H ( j Ω ) x(t)\Leftrightarrow X(j\Omega),h(t)\Leftrightarrow H(j\Omega) x(t)X(jΩ)h(t)H(jΩ),则有 h ( t ) ∗ x ( t ) ⇔ H ( j Ω ) X ( j Ω ) h(t)*x(t)\Leftrightarrow H(j\Omega)X(j\Omega) h(t)x(t)H(jΩ)X(jΩ) 证明: F [ x ( t ) ∗ h ( t ) ] = ∫ − ∞ ∞ [ ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ ] e − j Ω t d t = ∫ − ∞ ∞ x ( τ ) [ ∫ − ∞ ∞ h ( t − τ ) e − j Ω t d t ] d τ = ∫ − ∞ ∞ x ( τ ) [ e − j Ω τ H ( j Ω ) ] d τ = H ( j Ω ) X ( j Ω ) \begin{aligned} F[x(t)*h(t)] &=\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau]e^{-j\Omega t}dt\\ &=\int_{-\infty}^{\infty}x(\tau)[\int_{-\infty}^{\infty}h(t-\tau)e^{-j\Omega t}dt]d\tau\\ &=\int_{-\infty}^{\infty}x(\tau)[e^{-j\Omega \tau}H(j\Omega)]d\tau\\ &=H(j\Omega)X(j\Omega) \end{aligned} F[x(t)h(t)]=[x(τ)h(tτ)dτ]ejΩtdt=x(τ)[h(tτ)ejΩtdt]dτ=x(τ)[ejΩτH(jΩ)]dτ=H(jΩ)X(jΩ)该定理可以使我们方便地将在时域上难计算的问题转到频域上进行处理
类似的,频域卷积定理为 h ( t ) x ( t ) ⇔ 1 2 π H ( j Ω ) ∗ X ( j Ω ) h(t)x(t)\Leftrightarrow \frac{1}{2\pi}H(j\Omega)*X(j\Omega) h(t)x(t)2π1H(jΩ)X(jΩ)

1.4.3 相关

相关和卷积的运算很像,他求的是两个系统的相似性,定义为 y ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t + τ ) d τ y(t)=\int_{-\infty}^{\infty}x(\tau)h(t+\tau)d\tau y(t)=x(τ)h(t+τ)dτ同样的,也有相关定理,表示为 ∫ − ∞ ∞ h ( τ ) x ( t + τ ) d τ ⇔ H ( j Ω ) X ∗ ( j Ω ) \int_{-\infty}^{\infty}h(\tau)x(t+\tau)d\tau\Leftrightarrow H(j\Omega)X^*(j\Omega) h(τ)x(t+τ)dτH(jΩ)X(jΩ)

1.5 连续时间信号采样

1.5.1 采样

采样是对连续时间模拟信号 x ( t ) x(t) x(t)按一定时间间隔 T T T抽取相应瞬时值的过程,实际采样每个脉冲会存在一定的时间宽度 τ \tau τ,但是由于 τ ≪ T \tau\ll T τT,所以我们可以将采样脉冲视为理想脉冲,则理想采样信号 x s ( t ) x_s(t) xs(t)可以表示为 x s ( t ) = { x ( n T ) } = { … , x ( − T ) , x ( 0 ) , x ( T ) , x ( 2 T ) , …   } x_s(t)=\{x(nT)\}=\{\ldots,x(-T),x(0),x(T),x(2T),\dots\} xs(t)={x(nT)}={,x(T),x(0),x(T),x(2T),}

1.5.2 采样函数

首先,我们给出连续时间的单位冲激函数 δ ( t ) \delta(t) δ(t),其定义为 δ ( t ) = { 1 , t = 0 0 , t ≠ 0 \delta(t)= \begin{equation} \left\{ \begin{aligned} \nonumber 1,t=0\\ 0,t\neq 0\\ \end{aligned} \right. \end{equation} δ(t)={1,t=00,t=0且有 ∫ − ∞ ∞ δ ( t ) d t = 1 \int_{-\infty}^{\infty}\delta(t)dt=1 δ(t)dt=1也就是说单位脉冲没有持续期但是有面积,我们将面积“1”作为他在0点处的函数值,称为冲激强度。进一步我们可以得到, δ ( t ) \delta(t) δ(t)与任意 x ( t ) x(t) x(t)相乘时有 ∫ − ∞ ∞ x ( t ) δ ( t ) = x ( 0 ) ∫ − ∞ ∞ δ ( t ) d t = x ( 0 ) \int_{-\infty}^{\infty}x(t)\delta(t)=x(0)\int_{-\infty}^{\infty}\delta(t)dt=x(0) x(t)δ(t)=x(0)δ(t)dt=x(0) x ( t ) x(t) x(t)在0时刻的采样值 x ( 0 ) x(0) x(0)倘若对 δ ( t ) \delta(t) δ(t)施加一个时移 t 0 t_0 t0成为 δ ( t − t 0 ) \delta(t-t_0) δ(tt0),其与 x ( t ) x(t) x(t)的乘积为 ∫ − ∞ ∞ x ( t ) δ ( t − t 0 ) = x ( 0 ) ∫ − ∞ ∞ δ ( t − t 0 ) d t = x ( t 0 ) \int_{-\infty}^{\infty}x(t)\delta(t-t_0)=x(0)\int_{-\infty}^{\infty}\delta(t-t_0)dt=x(t_0) x(t)δ(tt0)=x(0)δ(tt0)dt=x(t0) x ( t ) x(t) x(t) t 0 t_0 t0时刻的采样值,这意味着 δ ( t ) \delta(t) δ(t)具备筛选性质,可通过它获得信号中我们所需要的任意时刻的值。如果将很多个不同的时移 δ ( t ) \delta(t) δ(t)进行组合,就可以在时域上取到一系列信号值。我们令 t 0 = n T ( − ∞ < n < ∞ ) t_0=nT(-\infty<n<\infty) t0=nT(<n<) 可得到一组周期性的冲激串,称之为理想采样函数 p ( t ) = Σ n = − ∞ ∞ δ ( t − n T ) p(t)=\Sigma_{n=-\infty}^{\infty}\delta(t-nT) p(t)=Σn=δ(tnT)将理想采样信号与连续时间信号相乘得到的就是以采样间隔 T T T对连续时间信号的理想采样,所得采样信号 x s ( t ) x_s(t) xs(t)与模拟信号 x ( t ) x(t) x(t)的关系为 x s ( t ) = x ( t ) p ( t ) = x ( t ) Σ n = − ∞ ∞ δ ( t − n T ) = Σ n = − ∞ ∞ x ( n T ) δ ( t − n T ) x_s(t)=x(t)p(t)=x(t)\Sigma_{n=-\infty}^{\infty}\delta(t-nT)=\Sigma_{n=-\infty}^{\infty}x(nT)\delta(t-nT) xs(t)=x(t)p(t)=x(t)Σn=δ(tnT)=Σn=x(nT)δ(tnT)可见,采样函数建立起了连续时域与离散时域的联系

1.5.3 采样定理

这章直接先说,什么是采样定理:
给定一个带限信号 x ( t ) x(t) x(t),在 ∣ Ω ∣ > Ω 0 时 |\Omega|>\Omega_0时 ∣Ω∣>Ω0 X ( j Ω ) = 0 X(j\Omega)=0 X(jΩ)=0,如果采样频率 Ω s > 2 Ω 0 \Omega_s>2\Omega_0 Ωs>2Ω0,则模拟信号就可以由采样信号完全恢复出来。这就是采样定理,其中 Ω 0 \Omega_0 Ω0成为奈奎斯特频率, 2 Ω 0 2\Omega_0 2Ω0称为奈奎斯特率
在1.5.2节中我们曾给出过采样信号 x s ( t ) = x ( t ) p ( t ) = Σ n = − ∞ ∞ x ( n T ) δ ( t − n T ) x_s(t)=x(t)p(t)=\Sigma_{n=-\infty}^{\infty}x(nT)\delta(t-nT) xs(t)=x(t)p(t)=Σn=x(nT)δ(tnT),由卷积定理,时域相乘对应频域的卷积我们可以得其傅里叶变换为 X s ( j Ω ) = 1 2 π ∫ − ∞ ∞ X ( j Ω ) P ( j ( Ω − θ ) ) d θ X_s(j\Omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)P(j(\Omega-\theta))d\theta Xs(jΩ)=2π1X(jΩ)P(j(Ωθ))dθ p ( t ) ⇔ P ( j Ω ) = 2 π T Σ n = − ∞ ∞ δ ( Ω − n Ω s ) p(t)\Leftrightarrow P(j\Omega)=\frac{2\pi}{T}\Sigma_{n=-\infty}^{\infty}\delta(\Omega-n\Omega_s) p(t)P(jΩ)=T2πΣn=δ(ΩnΩs) X s ( j Ω ) = 1 T Σ n = − ∞ ∞ X ( j ( Ω − n Ω s ) ) X_s(j\Omega)=\frac{1}{T}\Sigma_{n=-\infty}^{\infty}X(j(\Omega-n\Omega_s)) Xs(jΩ)=T1Σn=X(j(ΩnΩs)) 可以发现 X s ( j Ω ) X_s(j\Omega) Xs(jΩ)是频域上的周期函数,周期为 Ω s \Omega_s Ωs,而在一个周期内,其频域信号形状就是 X ( j Ω ) X(j\Omega) X(jΩ),所以只有当 Ω s > 2 Ω 0 \Omega_s>2\Omega_0 Ωs>2Ω0时,采样后信号在频域上才不会发生混叠。示意图如下在这里插入图片描述
在时域上举个例子
在这里插入图片描述
蓝色为原信号,上图橙色信号为正常采样的信号;下图橙色信号为欠采样的信号,黄色为另一可采样出橙色的信号

subplot 211;
t1=0:0.1:15;f1=cos(t1);plot(t1,f1);
hold on 
t2=0:0.5:15;f2=cos(t2);stem(t2,f2);
axis([0 15 -1 1]);
subplot 212;
t3=0:0.1:15;f3=cos(t3);plot(t3,f3);
hold on
t4=0:4:15;f4=cos(t4);stem(t4,f4); 
t5=0:0.1:15;f5=cos(0.57*t5);plot(t5,f5);
axis([0 15 -1 1]);

1.5.4 利用内插由样本重建信号

给定一个带限信号 x ( t ) x(t) x(t),在 ∣ Ω ∣ = π T > Ω 0 时 |\Omega|=\frac{\pi}{T}>\Omega_0时 ∣Ω∣=Tπ>Ω0 X ( j Ω ) = 0 X(j\Omega)=0 X(jΩ)=0,则其傅里叶反变换为
x ( t ) = 1 2 π ∫ − π T π T X ( j Ω ) e j Ω t d Ω = 1 2 π ∫ − π T π T T X s ( j Ω ) e j Ω t d Ω = 1 2 π ∫ − π T π T T [ Σ n = − ∞ ∞ x ( n T ) e − j Ω n T ] e j Ω t d Ω = T 2 π Σ n = − ∞ ∞ x ( n T ) ∫ − π T π T e j Ω ( t − n T ) d Ω = T 2 π Σ n = − ∞ ∞ x ( n T ) 1 t − n T e j Ω ( t − n T ) ∣ − π T π T = T 2 π Σ n = − ∞ ∞ x ( n T ) 2 sin ⁡ [ π ( t T − n ) ] t − n T = Σ n = − ∞ ∞ x ( n T ) sin ⁡ [ π ( t T − n ) ] π ( t T − n ) \begin{aligned} x(t) &=\frac{1}{2\pi}\int_{-\frac{\pi}{T}}^{\frac{\pi}{T}}X(j\Omega)e^{j\Omega t}d\Omega\\ &=\frac{1}{2\pi}\int_{-\frac{\pi}{T}}^{\frac{\pi}{T}}TX_s(j\Omega)e^{j\Omega t}d\Omega\\ &=\frac{1}{2\pi}\int_{-\frac{\pi}{T}}^{\frac{\pi}{T}}T[\Sigma_{n=-\infty}^{\infty}x(nT)e^{-j\Omega nT}]e^{j\Omega t}d\Omega\\ &=\frac{T}{2\pi}\Sigma_{n=-\infty}^{\infty}x(nT)\int_{-\frac{\pi}{T}}^{\frac{\pi}{T}}e^{j\Omega(t-nT)}d\Omega\\ &=\frac{T}{2\pi}\Sigma_{n=-\infty}^{\infty}x(nT)\frac{1}{t-nT}e^{j\Omega(t-nT)}|_{-\frac{\pi}{T}}^{\frac{\pi}{T}}\\ &=\frac{T}{2\pi}\Sigma_{n=-\infty}^{\infty}x(nT)\frac{2\sin[\pi(\frac{t}{T}-n)]}{t-nT}\\ &=\Sigma_{n=-\infty}^{\infty}x(nT)\frac{\sin[\pi(\frac{t}{T}-n)]}{\pi(\frac{t}{T}-n)}\\ \end{aligned} x(t)=2π1TπTπX(jΩ)ejΩtdΩ=2π1TπTπTXs(jΩ)ejΩtdΩ=2π1TπTπT[Σn=x(nT)ejΩnT]ejΩtdΩ=2πTΣn=x(nT)TπTπejΩ(tnT)dΩ=2πTΣn=x(nT)tnT1ejΩ(tnT)TπTπ=2πTΣn=x(nT)tnT2sin[π(Ttn)]=Σn=x(nT)π(Ttn)sin[π(Ttn)]上式即由采样信号 x ( n T ) x(nT) x(nT)重建 x ( T ) x(T) x(T)的内插公式,式中 sin ⁡ x x \frac{\sin x}{x} xsinx称为 抽样函数(内插函数) 通常记作 S a ( x ) = sin ⁡ x x Sa(x)=\frac{\sin x}{x} Sa(x)=xsinx形似的还有辛格函数记作 s i n c ( x ) = sin ⁡ ( π x ) π x sinc(x)=\frac{\sin(\pi x)}{\pi x} sinc(x)=πxsin(πx)二者形式上的区别仅在于是否归一化

1.6 补充

有时间了看能不能把下面的写成Latex搞成电子版

1.6.1 连续时间傅里叶级数性质

在这里插入图片描述

1.6.2 连续时间傅里叶变换性质

在这里插入图片描述
在这里插入图片描述

1.6.3 常用连续时间傅里叶变换对

在这里插入图片描述

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值