最大边界相关法(Maximal Marginal Relevance)的总结

MMR(Maximal Marginal Relevance)是文档重排序的方法,旨在平衡相关性和冗余。通过公式计算,选择使MMR最大的文档进行排序。首先使用简单信息检索方法获取初始K个文档,然后按MMR策略逐步构建有序集合,调整参数k和lambda以优化效果。该方法常用于查询扩展和文档摘要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MMR(Maximal Marginal Relevance)是一种重新确定文档序值的方法。

具体公式如下:


由上述公式可以看出sim(Q,di)代表的是di的相关性,而sim(di,dj)代表的是di的冗余性;

而MMR的核心,即在权衡这两种性质,即redundancy=cost,relevance=benefit

具体重定序的算法如下:


解释:

为了得到最初的k个文档,可以采用其他比较简单的信息检索方法(IR),如普通法,分段法,追溯法等,这样得到起始的K个文档,即总的文档集;

再从中选择与Query最接近的一篇文档,标记为第一个文档,然后将其从K个文档中去掉,作为有序集合,即R;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值