推荐系统
文章平均质量分 64
winner8881
这个作者很懒,什么都没留下…
展开
-
机器学习损失函数的理解
机器学习、深度学习关于loss你所需要知道的一切定义:对数损失,即对数似然损失(Log-likelihood Loss),或者交叉熵损失(cross-问题荣便宜Loss)−(ylog(p))+(1−y)log(1−p)-(ylog(p)) + (1-y)log(1-p)−(ylog(p))+(1−y)log(1−p),yyy表示样本的真是标签(1或者0),ppp表示模型预测为正样本的概率。可视化:展示当label为1时候...原创 2019-08-29 00:07:14 · 427 阅读 · 1 评论 -
深度学习中的Graph Embedding方法
深度学习中的Graph Embedding方法原创 2022-10-26 15:40:45 · 162 阅读 · 0 评论 -
Attention中的Q、K、V
attention 中的 q k v原创 2022-10-25 18:11:57 · 1729 阅读 · 2 评论 -
深度强化学习DQN
Deep Q Network(DQN)算法损失函数详解原创 2022-10-25 17:27:51 · 2279 阅读 · 0 评论 -
强化学习 Q-learning 算法举例
用简单例子讲解 Q - learning 的具体过程原创 2022-10-25 16:18:20 · 237 阅读 · 1 评论 -
GNN图神经网络算法入门(二)
本文主要介绍了GCN,及其衍生出来GraphSAGE,GAT原创 2022-10-25 11:41:28 · 185 阅读 · 0 评论 -
GNN图神经网络算法入门(一)
本文主要涉及到图神经网络背景介绍,任务类型、应用场景以及常规的图表示方法,比如邻接矩阵等。原创 2022-10-25 10:51:56 · 125 阅读 · 0 评论 -
从word2vec到YouTube DNN
本文对word2vec数学推导部分进行讲解,以skip-gram为例;大家推导的时候把握输入矩阵,输出矩阵;向量内积的意义;矩阵变换的意义;多元函数求偏导。最后给出了word2vec和经典youtube dnn的联系~原创 2022-01-14 20:57:55 · 464 阅读 · 0 评论 -
如何理解先验概率与后验概率
1、先验概率基于客观事实 或者 统计频率 得到的,或者你自身依据经验给出的一个概率值,我们称其为先验概率(prior probability),更加形象的例子,P(X=掷硬币为正面)=0.5。2、来个栗子????玩LOL占总人口60%,不玩LOL人数占40%,为便于叙述,用变量X来表示取值情况(X为全事件),有 :P(X=玩lol)=0.6P(X=玩lol)=0.6P(X=玩lol)=0.6,P(X=不玩lol)=0.4P(X=不玩lol)=0.4P(X=不玩lol)=0.4。另外玩lol中80原创 2022-01-14 20:24:48 · 1835 阅读 · 0 评论 -
深度学习推荐技术发展周期小结之精排模型
精排技术原创 2022-01-11 16:47:19 · 342 阅读 · 0 评论 -
词向量与Embedding究竟是怎么回事?
词向量,英文名叫Word Embedding,按照字面意思,应该是词嵌入。说到词向量,不少读者应该会立马想到Google出品的Word2Vec,大牌效应就是不一样。另外,用Keras之类的框架还有一个Embedding层,也说是将词ID映射为向量。由于先入为主的意识,大家可能就会将词向量跟Word2Vec等同起来,而反过来问“Embedding是哪种词向量?”这类问题,尤其是对于初学者来说,应该是很混淆的。事实上,哪怕对于老手,也不一定能够很好地说清楚。这一切,还得从one hot说起...原创 2022-01-11 15:58:25 · 336 阅读 · 0 评论 -
阿里巴巴CAN:Embedding前置的特征交互新思路
本篇文章介绍了阿里妈妈定向广告团队的最新作品:Co-Action Net(以下简称CAN)。CAN提出了一种全新的特征交互思路,将待交互的特征(用户侧和商品侧特征)分别作为DNN的输入和权重,用DNN的输出作为特征交互的结果。CAN在提升了特征交互的表达能力同时,降低了传统的笛卡尔积交叉所需要的计算复杂度。原创 2022-01-11 15:34:38 · 1008 阅读 · 8 评论 -
推荐系统常见模型梳理
1、推荐系统FM系列模型全家桶梳理原创 2021-09-14 14:37:09 · 1124 阅读 · 10 评论 -
DeepFM梳理
DeepFM梳理1、准备feature_index一个数值特征:一个 feature_index一个类别特征: category_name.unique() 个 feature_indexfeature_value一个数值特征:一个 feature_value,feature_value = 数值特征实际数值一个类别特征:多个 feature_value,feature_value = 12、参数定义feature_sizefeature_index范围,对应所有特原创 2021-07-03 11:55:03 · 299 阅读 · 1 评论