Description
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
解题思路
动态规划,建立一个 m * n 数组 maps。maps[i][j] 表示从初始位置 (0, 0) 到 (i, j) 有多少种路径。容易知道,(0, j) 和 (i, 0) 一定都为 1,因为 robot
只能向右走或者向下走,想走到 (0, j) 只能一直向右走,同样 (i, 0) 也只能是从初始位置一直向下走。其他的位置,走来的路径就有两种情况。最终正确解为 maps[n - 1]。
- 从当前位置的上边
- 从当前位置的左边
所以,当 i >= 1, j >= 1 时,maps[i][j] = maps[i - 1][j] + maps[i][j - 1];
这样,从左上角走到右下角即可得出正确解 maps[m - 1][n - 1]。
也可以用一维数组来存储路径的个数。数组的大小为列 n
的大小,因为循环遍历的时候是一行一行遍历的,除了第一行,每一行的上面的一行值是先计算好的。例如,刚开始遍历第 k 行时,maps[j] 中存储的是第 k - 1 行算出来的路径个数。第 k 行再从左往右遍历,maps[j - 1] 就是 maps[j] 左边的路径个数。所以,一维数组存储的话,i >= 1 时,j >= 1 时,maps[j] = maps[j] + maps[j - 1]。
Code
二维数组
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > maps(m, vector<int>(n));
for (int i = 0; i < m; ++i) maps[i][0] = 1;
for (int j = 0; j < n; ++j) maps[0][j] = 1;
for (int i = 1; i < m; ++i)
for (int j = 1; j < n; ++j)
maps[i][j] = maps[i - 1][j] + maps[i][j - 1];
return maps[m - 1][n - 1];
}
};
一维数组
class Solution {
public:
int uniquePaths(int m, int n) {
if (m <= 0 || n <= 0) return 0;
vector<int> maps(n);
maps[0] = 1;
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
maps[j] += maps[j - 1];
return maps[n - 1];
}
};
};