情景假设:
某个赛博世界。x-12123,一台家庭保姆机器人,收到指令,要求其去最近的四季西瓜市场挑选一只好西瓜。
正当x-12123,在一堆西瓜面前一筹莫展时,前辈x-12121给它传来了一张好西瓜表(表1)
x-12123根据表1成功挑选出了好西瓜。
| 编号 | 色泽 | 根蒂 | 敲声 |
|---|---|---|---|
| 1 | * | 蜷缩 | * |
| 2 | * | * | 浊响 |
| 3 | * | 蜷缩 | 浊响 |
假设空间,版本空间的必要性和设计性
情景说完了,正文开始,通俗来说,假设空间,训练数据集,版本空间,三者都可以看作一张张数据表。 比如上面表1就是一个版本空间。
现实生活中,我们根据表1中某一行数据来判断西瓜好坏的。但作为一名机器学习的学习者我们还需要知道表1(版本空间)是怎么来的?
设计思路是,排除法。
从一张大表,由所有色泽,根蒂,敲声等假设组成65条数据的假设空间作排除计算得出表1。
| 编号 | 色泽 | 根蒂 | 敲声 |
|---|

本文以赛博世界的场景引入,解释了机器学习中假设空间、训练数据集和版本空间的概念。通过举例说明,表1(版本空间)是由排除法从包含所有可能假设的表2(假设空间)中,结合表3(训练数据集)计算得出。文章还探讨了极端情况,即如果“好瓜”不存在的情况,数据65如何在运算中被处理。
最低0.47元/天 解锁文章
1081

被折叠的 条评论
为什么被折叠?



