自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(203)
  • 资源 (7)
  • 收藏
  • 关注

原创 前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)

本篇博客主要总结一下博主看过的人工智能领域的一些前沿论文,期待与大家一起进行交流探讨,列表中有超链接的是已经进行了精读的完整笔记,没有超链接的是进行了泛读的论文,博主会快马加鞭进行更新滴!请耐心等待博主嘿嘿,有什么比较好的论文也欢迎大家推荐给我啦,和大家一起学习共同进步!

2025-06-07 22:42:27 1667

原创 【大模型】【推荐系统】基于分层树搜索的大语言模型用户终身行为建模

推荐系统(Recommendation Systems, RS)已在电子商务、影视推荐及音乐发现等领域实现广泛部署,显著优化了用户体验。用户行为建模作为核心环节,其关键在于解码行为序列中蕴含的细粒度偏好信号。传统模型(如DIN、DIEN)主要依赖用户行为的离散标识符特征语义理解缺失:无法有效捕捉用户与项目的语义关联,在数据密集型场景中形成认知鸿沟;行为完整性忽视:仅利用局部历史行为片段,导致偏好建模碎片化。因此未能根本解决全局行为序列建模问题,制约对用户动态兴趣演化的精准刻画。

2025-06-10 22:31:56 737

原创 【大模型】解耦大语言模型中的记忆与推理能力

当前提升大语言模型(LLM)推理能力的研究方法主要可划分为两类:(1)基于记忆增强的方法。该方法聚焦于优化模型对外部世界知识的检索与利用机制,尤其针对未内化于模型参数的知识体系,例如检索增强生成(Retrieval-Augmented Generation, RAG),通过动态接入外部知识库强化信息召回能力。(2)基于推理优化的方法。该方法旨在改进模型自身的逻辑推演过程,例如引入思维链(Chain-of-Thought, CoT)技术引导多步推理,或在训练阶段植入结构化引导标记。

2025-06-10 19:16:41 953

原创 【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

检索增强生成(RAG)技术被广泛应用于定制化的大语言模型(LLMs),使其能够有效处理长尾知识、集成最新信息,并适应特定领域或任务需求,且无需调整模型权重。其流程包含两个核心阶段:首先,基于语义嵌入的检索器从文档集合或外部知识源中,查询并检索语义最相关的k个上下文片段;随后,大语言模型读取这些检索到的上下文片段,据此生成最终答案。这种技术可以显著增强大语言模型在专业与时效性场景下的知识利用能力。

2025-06-09 21:32:52 1017

原创 算法岗面试经验分享-大模型篇

在LayerNorm中,每个样本的特征向量会被中心化,即减去其均值,以使数据的均值为0,而在全连接层中,每个神经元都有一个可学习的偏置项,用于调整该神经元的输出。P-Tuning加了可微的virtual token,但是仅限于输入,没有在每层加,且virtual token的位置也不一定是前缀,插入的位置是可选的,这里的出发点实际是把传统人工设计模版中的真实token替换成可微的virtual token。嵌入 Transformer 的结构里面,在训练时,固定住原来预训练模型的参数不变,

2025-06-09 15:10:28 872

原创 【大模型】【推荐系统】LLM在推荐系统中的应用价值

序列推荐任务旨在通过用户过往的交互数据,来预测用户可能与之互动的下一个行为,因此这类模型通过建模分析用户的行动序列,揭示更复杂的行为模式和时间动态。近期研究表明,将大语言模型引入推荐系统逐渐成为研究热门,无论是将序列推荐视为语言模型的语义建模,还是作为用户表征的一种方法,都使大语言模型对序列推荐任务产生了深远影响。但是,由于大模型的庞大,在现实生活中大部分平台上应用大模型显得低效且不切实际,如何平衡好大模型的规模和推荐系统的海量数据,成为了能否用大模型进行序列推荐的关键问题。

2025-06-08 23:04:50 745

原创 【大模型】LogRAG:基于检索增强生成的半监督日志异常检测

随着微服务架构的复杂性增加,故障和异常的发生频率也随之上升,这对用户体验和系统稳定性构成了威胁。传统的日志分析方法依赖于人工,但在系统日益复杂的情况下,这种方法的效率和有效性都在下降。因此,自动化的日志分析成为了异常检测和故障预测的关键手段。(1)在实验部分将数据集分成若干组,每次都是训练前一组,然后在下一组上做测试。(2)有二次判断的过程,对初步异常检测的结果进行再判断,避免分类错误。

2025-06-08 18:04:44 598

原创 【自然语言处理】大模型时代的数据标注(主动学习)

传统的主动学习,降低了第一步的标注成本,通过迭代标注小部分数据,然后通过模型的Uncertainty(或Feature-based Diversity)进行校验,筛选剩余有价值的样本进行再标注。但仍存在两个问题,首先是少量标注其实很难训练很好的模型,影响后续筛选的步骤,其次传统AL还是需要大量的人力成本,目前的AL论文大部分都需要标注10%~50%以上的数据才能达到较好的性能。(1)数据标注依然重要,完全监督、弱监督的小模型在很多场景下比(未精调)大模型强;

2025-06-07 12:03:17 1009

原创 【leetcode刷题之路】面试经典hot100(2)——普通数组+矩阵+链表

最近开始陆陆续续有笔试啦,加油加油,大家也要加油哦!

2024-09-07 13:00:20 1676

原创 【推荐系统】【多任务学习】Progressive Layered Extraction (PLE)

尽管多任务学习在许多推荐应用中取得了成功,但现有模型常常因为现实世界推荐系统中任务之间复杂的相互关系而导致性能退化,这种现象称为负迁移。此外,研究者们观察到了一个有趣的跷跷板现象,即一个任务的性能提升往往以牺牲其他任务的性能为代价。为了解决这些问题,论文提出了一种名为渐进分层提取(Progressive Layered Extraction, PLE)的新型MTL模型。

2024-08-11 20:38:43 1107 1

原创 【leetcode刷题之路】面试经典hot100(1)——哈希+双指针+滑动窗口+子串

秋招开始啦,大家要加油哦!

2024-08-07 23:33:37 1026

原创 【推荐系统】【多任务学习】Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts

在传统多任务学习中,任务间关系被建模为固定和静态的。这意味着模型在训练过程中假设任务之间的关系不会变化,这限制了模型适应任务间可能存在的动态和复杂关系的能力。这种静态关系建模方式可能导致模型无法充分利用任务间的潜在互补信息,从而影响学习效率和泛化能力。此外,当任务间存在负迁移时,固定关系可能加剧这一问题,导致某些任务的性能下降。因此,需要一种能够动态调整任务间关系的MTL方法,以提高模型的灵活性和鲁棒性。这篇论文提出了多门控混合专家(MGMoE)模型,用于改善多任务学习中任务间关系建模的灵活性。

2024-08-01 23:52:56 956

原创 【leetcode刷题之路】面试经典150题(8)——位运算+数学+一维动态规划+多维动态规划

动态规划一生之敌!以后要多刷动态规划的题目培养思维能力!

2024-03-23 10:20:55 1297

原创 【leetcode刷题之路】面试经典150题(7)——分治+Kadane 算法+二分查找+堆

冲冲冲,拿下一道又一道算法题,拥抱满意offer!

2024-03-16 11:42:50 925

原创 【leetcode刷题之路】面试经典150题(6)——图+图的广度优先搜索+字典树+回溯

最近陆陆续续很多地方开始笔试和面试,大家都要好运好运哦,考的全会蒙的全对!!!

2024-03-11 11:03:46 1140 1

原创 【leetcode刷题之路】面试经典150题(5)——二叉树+二叉树层次遍历+二叉搜索树

最近有很多企业的春招和暑期实习都陆续开放了,大家要加油哦~

2024-03-04 22:50:19 903

原创 【leetcode刷题之路】面试经典150题(4)——栈+链表

刷题upupup,算法upupup,拥抱未来满意offer,加油加油加油!

2024-02-22 16:57:25 834 1

原创 【leetcode刷题之路】面试经典150题(3)——哈希表+区间

新年继续刷题继续加油!offer四面八方来!时时刻刻来!

2024-02-20 11:14:11 1045

原创 【leetcode刷题之路】面试经典150题(2)——双指针+滑动窗口+矩阵

新年新气象,大家一起刷题找到满意的offer!

2024-02-18 10:25:58 1292

原创 【leetcode刷题之路】面试经典150题(1)——数组/字符串

新年第一更,祝大家都找到满意的offer!!!

2024-02-16 15:48:44 1804

原创 面试常用排序查找算法

插入排序算法的优点是简单易懂,对于部分有序或者数据量较小的数组效率较高。,其中n是数组的长度。缺点是需要额外的空间来存储堆结构,并且对于稳定性要求高的场合不适用。,其中n是数组的长度。,其中n是数组的长度。缺点是要求数组必须是有序的,并且对于动态变化的数组不适用。冒泡排序算法的优点是简单易懂,不需要额外的空间。选择排序算法的优点是简单易懂,不需要额外的空间。,其中n是数组的长度。缺点是不稳定,并且对于不同的间隔选择效率有影响。,其中n是数组的长度。,其中n是数组的长度。,其中n是数组的长度。

2023-10-02 22:33:58 800

原创 【leetcode刷题之路】剑指Offer(4)——分治+排序算法+动态规划

前序遍历是根左右,中序遍历是左根右,这也就意味着前序遍历的第一个节点是整棵树的根节点,顺着这个节点找到它在中序遍历中的位置,即为in_root,那么in_root左边的都在左子树,右边的都在右子树,这样就可以知道左子树一共有多少个节点,然后去前序遍历中找到左右子树的分界点,分成左右两部分,分别重复上述过程,找到各自部分的第一个根节点,然后再依次往下进行,直到最后左右子树的边界发生重合,此时二叉树重建完毕。(2)第二层遍历,分别遍历每一位数是几,除了第一位是1-9之外,其余都是0-9。

2023-08-29 23:02:36 2601

原创 【leetcode刷题之路】剑指Offer(3)——搜索与回溯算法

这道题其实就是把给出的这个二叉树变成中序遍历的结果输出,然后在中序遍历的过程中改变左右子树的指向即可,使之变成双向循环链表,这里借助双指针来构造循环链表,head指向循环链表的开始,pre指向中序遍历过程中访问到的每个结点的前序结点,按照中序遍历的过程进行DFS,遍历到最下面的左子树时,开始构造链表,此时左子树应该是当前root的前驱,这样就构造出了一个循环,然后依次往上返回构造其他循环,最后要把头尾连接起来。以上一题不同的是每层的数要存放为一个向量,最后返回多个向量。

2023-07-10 23:12:06 1402

原创 【自然语言处理】COLD:中文攻击性言论检测数据集

随着社交媒体的普及,网络上出现了大量的攻击性言论,这些言论不仅影响了网络环境的文明程度,也对使用预训练语言模型的应用带来了潜在的风险。因此,检测和过滤攻击性言论是一项重要的任务,也是自然语言处理领域的一个研究热点。然而,目前针对中文攻击性言论检测的研究还很少,主要原因是缺乏可靠的数据集。这篇文章提出了一个中文攻击性言论检测的基准测试——COLD,包括一个数据集和一个检测器。

2023-06-26 09:58:43 4673 1

原创 【leetcode刷题之路】剑指Offer(2)——栈与队列+模拟+查找算法

定义两个栈s1和s2,s1是用来存放原始元素的栈,s2是用来记录每次s1入栈操作后此时的最小元素,这里要注意的时候,当每次s1进行pop操作时,s2也要进行pop操作,如果此时s2不为空的话,要把当前的最小值stack_min赋值为s2的栈顶元素,因为s2中出栈的元素有可能就是之前s1中的最小值,但是刚好此时s1出栈的元素就是这个最小值,所以这个最小值就消失了,不应该在s2中。模拟栈的压入过程即可,但是每次压入之后都要将top元素与popped中对应的元素进行比较,来模拟是否是合理的出栈序列。

2023-06-20 23:21:53 1167

原创 【一起啃书】《机器学习》第十章 降维与度量学习

主成分分析(PCA)是一种使用最广泛的数据降维算法,它的主要思想是将nnn维特征映射到kkk维上,这kkk维是全新的正交特征,也被称为主成分,是在原有nnn维特征的基础上重新构造出来的kkk维特征。PCA的数学定义是:一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。

2023-06-19 20:55:04 3182 1

原创 【一起啃书】《机器学习》第九章 聚类

AGNES是一种采用自底向上聚合策略的层次聚类算法,它先将数据集中的每个样本看作一个初始聚类簇,然后在算法运行的每一步中找出距离最近的两个聚类簇进行合并,该过程不断重复,直到达到预设的聚类簇个数,所以关键在于如何计算聚类簇之间的距离。聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”,通过这样的划分,每个簇可能对应于一些潜在的概念(类别),这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名。

2023-06-14 22:44:59 1525

原创 【leetcode刷题之路】剑指Offer(1)——字符串+链表+双指针

利用双指针,定义pa和pb分别指向A和B的头节点,这里判断是否相交采用了一个非常有意思的方法,假设A和B相交节点前各有skipA和skipB个节点,而相交节点数为C,pa和pb同时开始遍历,如果pa遍历完了就指向headB,同理pb,那么到最后总会遍历相同次数,对于A:skipA+C+skipB,对于B:skipB+C+skipA,如果此时的节点一样的话,说明相交,否则说明都遍历到了各自的最后节点仍不相交,返回空指针。判断当前l1和l2的大小,如果l1较小,就从l1往后连接,并返回l1,同理l2。

2023-06-12 22:16:17 5777

原创 【日志解析】【频率分析】ULP:基于正则表达式和本地频率分析进行日志模板提取

日志文件包括大量关于软件系统执行的信息,用于帮助处理不同的软件工程活动,生成的日志事件主要由两部分组成:日志头和日志消息。解析日志消息需要自动区分静态文本和动态变量,一种方法是使用正则表达式,而典型的工业日志文件可能包含数百个日志模板,许多方法基于频率分析来实现,比如Drain和Logram,这些工具将频率分析应用于整个日志文件,这使得很难在静态和动态标记之间找到明确的界限。

2023-06-11 20:23:54 1665

原创 【日志解析】【启发式】Drain:一种用于日志解析的深度解析树

如今,越来越多的开发人员利用现有的Web服务来构建他们自己的系统,在此背景下,基于日志分析的服务管理技术,即利用服务日志来实现自动或半自动的服务管理,已经得到了广泛的研究。因此,应用数据挖掘模型来了解系统行为的日志分析技术被广泛应用于服务管理。在这些日志分析技术中使用的大多数数据挖掘模型都需要结构化的输入(例如,一个事件列表或一个矩阵)。但是,原始日志消息通常是非结构化的,因为开发人员可以在源代码中编写自由文本的日志消息。因此,日志分析的第一步是日志解析,其中非结构化日志消息被转换为结构化事件。

2023-06-07 23:53:12 2118

原创 【leetcode刷题之路】初级算法(2)——链表+树+排序和搜索+动态规划

首先将链表进行反转,然后按照链表长度的一半逐一进行比较即可,这里要注意赋值的问题,一开始我是想直接把head赋值给一个空链表,后面发现指针这个东西都是指向同一个地址的,所以其中一个的结构变了另一个也会跟着变,后来就改用数组来存head里面原来正序的数字了,后期可以考虑一下如何用双指针(快慢指针)和栈怎么解决。BFS解题,按照树的每一层进行遍历,首先定义队列,如果当前节点不为空,则加入队列,之后分别遍历该节点的左右子树,依次重复上述操作,直到最后队列元素为空。二分法解题,注意遍历大小是从1到n,不要越界了。

2023-05-28 22:21:06 2121

原创 【一起啃书】《机器学习》第八章 集成学习

是个体学习器的平均分歧。Boosting是一种可将弱学习器提升为强学习器的算法:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本的分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器;在一般经验中,如果把好坏不等的个体学习器掺到一起,那么通常结果会是比最坏的要好一些,比最好的要坏一些,要获得好的集成,个体学习器应“好而不同”,即个体学习器要有一定的“准确性”,并且要有“多样性”,也就意味着学习器间具有差异,如下所示。

2023-05-27 21:32:29 1627 2

原创 【一起啃书】《机器学习》第七章 贝叶斯分类器

对于贝叶斯网学习而言,模型就是一个贝叶斯网,同时,每个贝叶斯网描述了一个在训练数据上的概率分布,自有一套编码机制能使那些经常出现的样本有更短编码,所以我们应该选择那个综合编码长度最短的贝叶斯网,这就是“最小描述长度”准则。贝叶斯网学习的首要任务就是根据训练数据集来找出结构最“恰当”的贝叶斯网,“评分搜索”是求解这一问题的常用方法,通过定义一个评分函数来评估贝叶斯网与训练数据的契合程度,然后基于这个评分函数来寻找结构最优的贝叶斯网。未观测变量的学名是“隐变量”。具体来说,一个贝叶斯网。

2023-05-13 16:24:23 1174

原创 【一起啃书】《机器学习》第六章 支持向量机

  给定训练样本集D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{−1,+1}D = \{ ({x_1},{y_1}),({x_2},{y_2}),...,({x_m},{y_m})\} ,{y_i} \in \{ - 1, + 1\}D={(x1​,y1​),(x2​,y2​),...,(xm​,ym​)},yi​∈{−1,+1},分类学习最基本的想法就是基于训练集DDD在样本空间中找到一个划分超平面,将不同类别的样本分开,但能将训练样本分开的划分超平面可能有很多,如下所示:  

2023-05-04 15:47:49 1690

原创 【一起啃书】《机器学习》第五章 神经网络

基于梯度的搜索时使用最为广泛的参数寻优方法,梯度下降法是沿着负梯度方向搜索最优解,因为负梯度方向是函数在当前点的方向导数最小的方向,方向导数是函数沿着某个方向的变化率,它与函数的梯度和该方向的单位向量的点积相等,当两个向量的夹角为180度时,点积最小,也就是说,当单位向量与梯度的反方向一致时,方向导数最小。Elman网络是最常用的递归神经网络之一,如下所示,它的结构与多层前馈网络很相似,但隐层神经元的输出被反馈回来,与下一时刻输入层神经元提供的信号一起,作为隐层神经元在下一时刻的输入。

2023-04-28 21:05:44 4096 1

原创 【leetcode刷题之路】初级算法(1)——数组+字符串

还是继续使用了双指针,low_price指的是目前遍历到的最低价格,初始为第一个元素,high_price指的是目前遍历到的最高价格,当找到最高价格的时候,说明产生了利润,这是计算本次的利润,并修改两个指针的值再次向后遍历,直到遍历完所有情况,不过这里还要考虑一下特殊情况,比如如果股票价格一天比一天低,最后利润应该为0,在这里定义了一个flag用来判断这个特殊情况。简单的进位加法题目,从数组的最后一个元素往前遍历即可,满十进一,不过要判断一下数组的第一个元素是否满十进一。

2023-04-20 00:05:31 1081

原创 【一起啃书】《机器学习》第四章 决策树

一般的,一棵决策树包含一个根结点、若干个内部结点和若干个叶结点,叶结点对应于决策结果,其他每个结点则对应于一个属性测试,每个结点包含的样本集合根据属性测试的结果被划分到子结点中,根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定测试序列。下面举一个西瓜数据集的例子,以下是数据集详情。决策树学习的关键在于如何选择最优化分属性,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,也就是结点的“纯度”越来越高,下面介绍几种在选择最优划分属性时常用的指标。

2023-04-15 01:03:35 837

原创 【一起啃书】《机器学习》第三章 线性模型

考虑到二分类任务,其输出标记$y \in { 0,1} $,而线性回归模型产生的预测值是实数值,所以需要将其进行转换,最理想的是单位阶跃函数,即预测值大于零判为正例,小于零判为负例,等于零可任意判别。需注意的是,欠采样法的时间开销通常远小于过采样法,因为前者丢弃了很多反例,使得分类器训练集远小于初始训练集,而过采样法增加了很多正例,其训练集大于初始训练集,过采样法也不能简单地对初始正例样本进行重复来样,否则会招致严重的过拟合。它的作用是减小模型所有参数的大小,可以防止模型过拟合,提升模型的泛化能力。

2023-04-11 19:35:01 582

原创 【一起啃书】《机器学习》第一章 绪论 + 第二章 模型评估与选择

其中,训练集和测试集是必须的,而验证集是可选的,如果没有设置验证集,通常得等到测试集才可以知道训练之后的模型效果如何,然后再来调整超参数,这样时间代价较高,通过验证集可以训练几个epoch后查看模型的训练效果,然后决定怎么调整超参数。:数据集、示例(样本)、属性(特征)、属性值、属性空间(样本空间、输入空间)、特征向量、学习(训练)、训练数据(训练集)、训练样本、学习器、标记空间(输出空间)、分类、回归、聚类、监督学习、无监督学习、正类、反类、多分类、测试集、泛化能力、假设空间、版本空间。

2023-04-08 15:52:41 1435

原创 【自然语言处理】【词嵌入】dLCE:将词汇对比集成到近义反义的词嵌入中

近义词与反义词是一中非常重要的语义关系,在nlp中应用广泛,由于它们在文本中可以互相替换着出现,所以区分它们颇具挑战。目前的方法认为具有相似分布的词汇有着相关的含义,于是倾向于构建词向量的方式来区分近义词与反义词。本文提出了新式的向量表示,提高预测词汇的相似度,对传统的分布式语义模型和词向量模型都有效。此方法通过使用词汇对比信息提高了权重特征的质量以区分同义词和反义词;结合词汇对比信息和skip-gram 模型预测相似、确定反义词。提高了权重特征的质量以区分同义词和反义词;

2023-04-04 23:18:51 863

2018计算机考研408真题和答案.pdf

2018计算机考研408真题和答案 真题清晰,答案完整详细,适合所有想考计算机研究生的同学们 欢迎大家下载

2020-12-07

2016计算机考研408真题和答案.pdf

2016计算机考研408真题和答案 真题清晰,答案完整详细,适合所有想考计算机研究生的同学们 欢迎大家下载

2020-12-07

2020计算机考研408真题和答案.pdf

2020计算机考研408真题和答案 真题清晰,答案完整详细,适合所有想考计算机研究生的同学们 欢迎大家下载

2020-12-07

2012计算机考研408真题和答案.pdf

2012计算机考研408真题和答案 真题清晰,答案完整详细,适合所有想考计算机研究生的同学们 欢迎大家下载

2020-12-07

2013计算机考研408真题和答案.pdf

2013计算机考研408真题和答案 真题清晰,答案完整详细,适合所有想考计算机研究生的同学们 欢迎大家下载

2020-12-07

2010计算机考研408真题和答案.pdf

2010计算机考研408真题和答案 真题清晰,答案完整详细,适合所有想考计算机研究生的同学们 欢迎大家下载

2020-12-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除