动态规划——完全背包问题(C++实现)

题目描述:

在这里插入图片描述

问题分析:

完全背包问题和01背包问题的不同点:

简单01背包中是从N个物品里选,每个物品只能用1次,完全背包则不同,每个物品可以用无限次。

01背包:

如果物品能放入背包( j>=v[i])则动态转移方程为 :
dp[i][j]=max( dp[i-1][j],dp[i-1][ j-v[i] ]+ w[i] ),
如果物品不能放入背包(j<v[i])则动态转移方程为 :
dp[i][j]=dp[i-1][j]

完全背包:

动态转移方程满足:dp[i][j]=max{dp[i-1][ j-k×v[i] ] + k×w[i]},其中 0 ≤ k×v[i] ≤ j
可以发现,当k只能取0、1时的特例就是简单的0-1背包问题。

可以发现,选0次,即不选是肯定存在的,dp[i][j]=dp[i-1][j];
然后选1次,那就不一定存在了,可能可以选,也可能不可以选,假设可以选,在选0次该物品求出dp[i][j]的基础上,确定是否选该物品:if (j>=v[i]) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);
选2次、选3次,依次类推,一直到选k次。

代码和注释:

#include <iostream>
#define read(x,y) scanf("%d%d",&x,&y)
using namespace std;

int v[1010],w[1010];
int dp[1010][1010];//N行V列,0行0列初始为0

int main() 
{
    int N,V;
    //读入物品种类N和背包体积V
    read(N,V);
    //读入各个物品所占的体积和拥有的价值
    for (int i=1;i<=N;i++) 
        read(v[i],w[i]);
    
    for (int i=1;i<=N;i++)
        for (int j=0;j<=V;j++)
            //迭代k次
            for (int k=0;k*v[i]<=j;k++)
                dp[i][j]=max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);

    printf("%d",dp[N][V]);

    return 0;
}

结果展示:

在这里插入图片描述

进一步优化,参看:

https://blog.csdn.net/HangHug_L/article/details/114238728

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值