洛谷OJ: P1514 引水入城

思路:首先用BFS搜索(其实用记忆化的DFS更好)能够到达的城市,判断一下是否所有城市都能够被覆盖即可完成第一问,那么关键在于第二问怎么完成,通过思考可以得出"如果每座城市都可以到达,那么一个蓄水场可到达的城市是连续的"这样一个结论,那么就变成了一个区间覆盖问题,至此已经可以完成这一题了

/**
 *  洛谷oj: P1514 引水入城
 *  类型:搜索,贪心
 */
#include<algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;


struct City {
    int l, r;
    bool operator < (City a) const {
        return l < a.l;
    }
};

struct Pos {
    int x, y;
};

const int maxn = 500+10;
const int dx[] = {0,0,1,-1};
const int dy[] = {1,-1,0,0};
bool vis[maxn][maxn], isget[maxn], used[maxn];
int maps[maxn][maxn];
int n, m;
vector<City> citys;

void bfs(int a) {
    int l = 0x3f3f3f3f, r = -0x3f3f3f3f;
    bool iscan = 0;
    queue<Pos> que;
    que.push(Pos{1,a});
    vis[1][a] = 1;
    if( n == 1 ) { //当这个城市即是沿海城市又是沙漠城市时的特判
        iscan = 1;
        isget[a] = 1;
        l = min(l, a);
        r = max(r, a);
    }
    while(!que.empty()) {
        Pos cur = que.front(); que.pop();
        if( cur.x == 1 ) used[cur.y] = 1;
        for(int i = 0; i < 4; i++) {
            int tx = cur.x + dx[i], ty = cur.y + dy[i];
            if(!vis[tx][ty] && ( tx >= 1 && tx <= n && ty >= 1 && ty <= m ) && maps[tx][ty] < maps[cur.x][cur.y] ) {
                vis[tx][ty] = 1;
                que.push(Pos{tx,ty});
                if( tx == n ) {
                    iscan = 1;
                    isget[ty] = 1;
                    l = min(l, ty);
                    r = max(r, ty);
                }
            }
        }
    }
    if(iscan) citys.push_back(City{l,r});
    memset(vis, 0, sizeof(vis));
}

int main() {
    /************input***********/
    memset(maps, -0x3f, sizeof(maps));
    scanf("%d %d", &n, &m);
    for( int i = 1; i <= n; i++ )
        for( int j = 1; j <= m; j++ )
            scanf("%d", &maps[i][j]);
    /****************************/
    //bfs跑图
    for( int i = 1; i <= m; i++ )
        if( maps[1][i] >= maps[1][i-1] && maps[1][i] >= maps[1][i+1] ) //如果其海拔小于边上的蓄水池那么该蓄水池是无意义的
            bfs(i);
    int ans1 = 1, ans2 = 0;
    for( int i = 1; i <= m; i++ ) {
        if( !isget[i] ) {
            ans1 = 0;
            ans2++;
        }
    }
    printf("%d\n", ans1);
    if(!ans1) {
        printf("%d\n", ans2);
        return 0;
    }
    //排序
    sort(citys.begin(), citys.end());
    //跑一遍贪心区间覆盖模板
    int last = 1, i = 0;
    while( last <= m ) {
        int t = 0;
        while(citys[i].l <= last) t = max(citys[i++].r, t);
        last = t + 1; ans2++;
    }
    printf("%d\n", ans2);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值