[杂题训练]CF1228E Another Filling the Grid(容斥),CF936C Lock Puzzle(构造)

T1:CF1228E Another Filling the Grid

点我

solution

反过来思考,用所有方案数➖不合法方案数
很容易想到的是——容斥!!
首先只考虑行数
减去至少一行没有 1 1 1的方案数,加上至少两行没有 1 1 1的方案数…
得出以下柿子
∑ i = 0 n ( − 1 ) i × C n i × ( k − 1 ) i × n × k n 2 − i × n \sum_{i=0}^n(-1)^i\times C_n^i\times (k-1)^{i\times n}\times k^{n^2-i\times n} i=0n(1)i×Cni×(k1)i×n×kn2i×n
(枚举 i i i行不含 1 1 1,那么这 i i i行共 i × n i\times n i×n个格子,除了 1 1 1不能填,只有 k − 1 k-1 k1个数可以填,剩下的 n 2 − i × n n^2-i\times n n2i×n格子 k k k个数都可以填)
再加上列的限制
∑ i = 0 n ∑ j = 0 n ( − 1 ) i + j × C n i × C n j × ( k − 1 ) i × n + j × n − i × j × k n 2 − ( i × n + j × n − i × j ) \sum_{i=0}^n\sum_{j=0}^n(-1)^{i+j}\times C_n^i\times C_n^j\times (k-1)^{i\times n+j\times n-i\times j}\times k^{n^2-(i\times n+j\times n-i\times j)} i=0nj=0n(1)i+j×Cni×Cnj×(k1)i×n+j×ni×j×kn2(i×n+j×ni×j)
i i i行与 j j j列包含的格子数   =   i \ =\ i  = i行包含的格子数 i × n   +   j i\times n\ +\ j i×n + j列包含的格子数   −   i , j \ -\ i,j   i,j共同包含的格子数 i × j i\times j i×j


到这里, O ( n 2 ) O(n^2) O(n2)已经可以悠闲地过这道题了,但是我们要 没事找事吃饱了撑的 热爱学习,深度挖掘,万一 n n n一下子猛加到 1 e 5 , 1 e 6 1e5,1e6 1e5,1e6级别呢??
换言之,我们是否还能再找到一个 O ( n l o g n ) O(nlogn) O(nlogn)的优秀算法呢??

答案当然是 o f   c o u r s e , w h y   n o t of\ course,why\ not of course,why not


来化一下上面的优美柿子

( k − 1 ) i × n + j × n − i × j × k n 2 − ( i × n + j × n − i × j ) (k-1)^{i\times n+j\times n-i\times j}\times k^{n^2-(i\times n+j\times n-i\times j)} (k1)i×n+j×ni×j×kn2(i×n+j×ni×j)
= ( k − 1 ) i × ( n − j ) × ( k − 1 ) j × n × k ( n − i ) ( n − j ) =(k-1)^{i\times (n-j)}\times (k-1)^{j\times n}\times k^{(n-i)(n-j)} =(k1)i×(nj)×(k1)j×n×k(ni)(nj)
= [ ( k − 1 ) i ] ( n − j ) × [ ( k − 1 ) n ] j × ( k n − i ) n − j =[(k-1)^i]^{(n-j)}\times [(k-1)^n]^j\times (k^{n-i})^{n-j} =[(k1)i](nj)×[(k1)n]j×(kni)nj
= [ ( k − 1 ) i × k n − i ] n − j × [ ( k − 1 ) n ] j =[(k-1)^i\times k^{n-i}]^{n-j}\times [(k-1)^n]^j =[(k1)i×kni]nj×[(k1)n]j
到这里就非常明显了,让我们换个硬元更加明显
x = ( k − 1 ) i × k n − i , y = ( k − 1 ) n x=(k-1)^i\times k^{n-i},y=(k-1)^n x=(k1)i×kni,y=(k1)n
则上述柿子可变为 x n − j × y j x^{n-j}\times y^j xnj×yj
太像我们的二项式小可爱了,但是不要 不穿裤子就不跑 ,还少了点什么,我们需要把前面的
( − 1 ) j × C n j (-1)^j\times C_n^j (1)j×Cnj提过来才行
( − 1 ) j × C n j × x n − j × y j = ( x − y ) n (-1)^j\times C_n^j\times x^{n-j}\times y^j=(x-y)^n (1)j×Cnj×xnj×yj=(xy)n
于是答案柿子就可以剔除 j j j,只剩下与 i i i有关的柿子了
∑ i = 0 n ( − 1 ) i × C n i × [ ( k − 1 ) i × k n − i + ( k − 1 ) n ] n \sum_{i=0}^n(-1)^i\times C_n^i\times [(k-1)^i\times k^{n-i}+(k-1)^n]^n i=0n(1)i×Cni×[(k1)i×kni+(k1)n]n
次方就找快速幂 q k p o w qkpow qkpow老火鸡完成,时间复杂度就成功降为 O ( n l o n g ) O(nlong) O(nlong)
当然 k k k的幂次可以提前预处理,这样可以少跑几次快速幂,优化可能有 个芝麻大点

code

#include <cstdio>
#define int long long
#define mod 1000000007
#define maxn 300
int n, k;
int fac[maxn], inv[maxn];

int qkpow( int x, int y ) {
	int ans = 1;
	while( y ) {
		if( y & 1 ) ans = ans * x % mod;
		x = x * x % mod;
		y >>= 1;
	}
	return ans;
}

int C( int n, int m ) {
	if( n < m ) return 0;
	return fac[n] * inv[m] % mod * inv[n - m] % mod;
}

signed main() {
	scanf( "%lld %lld", &n, &k );
	fac[0] = inv[0] = 1;
	for( int i = 1;i <= n;i ++ )
		fac[i] = fac[i - 1] * i % mod;
	inv[n] = qkpow( fac[n], mod - 2 );
	for( int i = n - 1;i;i -- ) 
		inv[i] = inv[i + 1] * ( i + 1 ) % mod;
	int ans = 0;
	for( int i = 0;i <= n;i ++ ) {
		if( i & 1 )
			ans = ( ans - C( n, i ) * qkpow( ( qkpow( k - 1, i ) * qkpow( k, n - i ) % mod - qkpow( k - 1, n ) + mod ) % mod, n ) % mod + mod ) % mod;
		else
			ans = ( ans + C( n, i ) * qkpow( ( qkpow( k - 1, i ) * qkpow( k, n - i ) % mod - qkpow( k - 1, n ) + mod ) % mod, n ) % mod ) % mod;
	}	
	printf( "%lld", ans );
	return 0;
}

T2:CF936C Lock Puzzle

戳一戳

solution

一般这种限制多少次以内就算成功的题目肯定是个构造题!!
观察数据范围 n ≤ 2000 n\le 2000 n2000,操作次数 ≤ 6100 \le 6100 6100
大胆猜想应该让我们用 3 × n 3\times n 3×n的操作左右完成构造
即对于每一个字符最多只用 3 3 3步就让ta锁定在我们想要ta在的位置


直接说正解吧
假设现在的 s s s串长下列样子

A   x   B   C A\ x\ B\ C A x B C

A , B , C A,B,C A,B,C均为一个字符子串, C C C稍特殊一点,既是 s s s串的后缀,同时要为 t t t串的前缀,且最长
当然三个串可以为空
x x x为我们想移动的字符

现在目标是将 x x x移动到 C C C后面一个,即 C x Cx Cx构成一个新的 t t t的前缀


操作①: s h i f t   l e n ( B C ) shift\ len(BC) shift len(BC)
原串变为 C ′   B ′   A   x C'\ B'\ A\ x C B A x

操作②: s h i f t   l e n ( 1 ) shift\ len(1) shift len(1)
继续变为 x   C ′   B ′   A x\ C'\ B'\ A x C B A

操作③: s h i f t   l e n ( n − 1 ) shift\ len(n-1) shift len(n1)
成为 A ′   B   C   x A'\ B\ C\ x A B C x

我们只关心 C x Cx Cx是否一起出现在最后面,前面的 A A A是否颠倒,不在乎滴

code

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 2005
int n, tot;
char s[maxn], t[maxn];
int tot_s[maxn], tot_t[maxn], ans[maxn << 2];

int main() {
	scanf( "%d %s %s", &n, s + 1, t + 1 );
	for( int i = 1;i <= n;i ++ )
		tot_s[s[i]] ++, tot_t[t[i]] ++;
	for( int i = 'a';i <= 'z';i ++ )
		if( tot_s[i] != tot_t[i] ) return ! printf( "-1\n" );
	int cnt = 0;
	for( int i = 1;i <= n;i ++ )
		if( s[i] == t[1] ) {
			bool flag = 1;
			for( int j = i;j <= n;j ++ )
				if( s[j] != t[j - i + 1] ) {
					flag = 0;
					break;
				}
			if( flag ) {
				cnt = n - i + 1;
				break;
			}
		}
	while( 1 ) {
		bool flag = 1;
		for( int i = 1;i <= n;i ++ )
			if( s[i] != t[i] ) {
				flag = 0;
				break;
			}
		if( flag ) break;
		int pos;
		for( int i = 1;i <= n - cnt;i ++ )
			if( s[i] == t[cnt + 1] ) {
				pos = i;
				break;
			}
		ans[++ tot] = n - pos;
		ans[++ tot] = 1;
		ans[++ tot] = n - 1;
		if( pos > 1 ) reverse( s + 1, s + pos );
		char temp = s[pos];
		for( int i = pos;i < n;i ++ )
			s[i] = s[i + 1]; 
		s[n] = temp;
		cnt ++;
	}
	printf( "%d\n", tot );
	for( int i = 1;i <= tot;i ++ )
		printf( "%d ", ans[i] );
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值