因为只有std,没有自我实现,所以是无码专区
主要是为了训练思维能力
solution才是dls正解,但是因为只有潦草几句,所以大部分会有我自己基于正解上面的算法实现过程,可能选择的算法跟std中dls的实现不太一样。
std可能也会带有博主自己的注释。
problem
给定一个由左右括号构成的字符串 s s s,对于每一个位置 i i i,定义 a n s i : ans_i: ansi: 有多少个子串满足这个子串是一个合法的括号序列,并且 i i i 这个位置在子串中。
合法的括号序列定义:
- 空串合法。
- 如果 S S S 合法,那么 ( S ) (S) (S) 也是合法的。
- 如果 S , T S,T S,T 合法,那么 S T ST ST 也是合法的。
由于答案很大,输出 ∑ i = 1 ∣ S ∣ ( i ⋅ a n s i m o d 1 0 9 + 7 ) \sum_{i=1}^{|S|}\Big(i·ans_i\mod{10^9+7}\Big) ∑i=1∣S∣(i⋅ansimod109+7),注意是先取模再相加,相加后并不需要取模。
∣ S ∣ ≤ 1 0 7 , 1 s , 512 M B |S|\le 10^7,1s,512MB ∣S∣≤107,1s,512MB。
my idea
套路的,将括号序列转化为 ± 1 ±1 ±1 分数序列,左括号为 + 1 +1 +1,右括号为 − 1 -1 −1。并求前缀和
当一个串为合法括号序列,当且仅当每个位置的前缀和都不小于 0 0 0 ,且最后一个位置的前缀和恰好为 0 0 0。
保证了没有中途右括号个数多于左括号个数,以及最后左右括号个数匹配,显然这是充要条件。
考虑枚举合法括号序列的左端点。
可以肯定的是,被枚举的位置
i
i
i 本身首先得是个 (
。
通过某种手段快速找到 i i i 后面的第一个小于 0 0 0 的前缀和位置 j j j。因为从 j j j 开始后面就一定不合法了。
注意以下的前缀和若无特殊说明,都是指以 i i i 开始的前缀和,所以应该满足 s u m j − s u m i − 1 < 0 sum_j-sum_{i-1}<0 sumj−sumi−1<0。
显然,
j
j
j 位置一定是个 )
,且
[
i
,
j
)
[i,j)
[i,j) 一定是一个合法括号序列。当然这个性质没有什么用。有用的只是
j
j
j 的位置。
特殊地,如果一直到最后 ∣ S ∣ |S| ∣S∣ 都没找到,就返回 ∣ S ∣ + 1 |S|+1 ∣S∣+1 即可。
考虑二分,但很容易发现这并不具有连续性,错误。
考虑线段树,相当于在 i i i 时去考虑小于 s u m i − 1 sum_{i-1} sumi−1 的 s u m j sum_j sumj。
具体而言:
从后往前做,到 i i i 时线段树上储存的是 [ i , n ] [i,n] [i,n] 的前缀和(此前缀和是指从 1 1 1 开始的)。
线段树是权值线段树,每个叶子权值储存的是距离 i i i 最近的下标 j j j。
所以查询就是在线段树上 [ 1 , s u m i − 1 ) [1,sum_{i-1}) [1,sumi−1) 区间查询最小的节点权值。
即以权值为线段树上的下标,以下标为线段树上的权值。
维护区间最小值。
修改:每次 i i i 前移 − 1 -1 −1,就把 i i i 的前缀和对应的线段树上叶子节点权值更改为 i i i。
确定了整个大区间,考虑其中的的合法序列,即 s [ i , k ] , i < k < j s[i,k],i<k<j s[i,k],i<k<j 的合法括号序列。
显然只需要满足 k k k 的前缀和为 0 0 0 即可。
现在的问题是怎么迅速找到这些 k k k,并快速计算贡献。
先考虑快速计算贡献,显然 [ i , k ] [i,k] [i,k] 一段合法括号序列会让 i ≤ x ≤ k i\le x\le k i≤x≤k 的 a n s x ans_x ansx 都 + 1 +1 +1。
所以这里采取差分手段,对 a n s k + 1 , a n s i − 1 − 1 ans_k+1,ans_{i-1}-1 ansk+1,ansi−1−1,最后的时候来一次后缀和,每个 a n s x ans_x ansx 都是正确的了。
最后就只剩下迅速找到这些 k k k 的问题了。
一开始就将所有的前缀和 s u m i sum_i sumi(这里的前缀和是指以 1 1 1 开始的)桶排序。
即以
s
u
m
i
sum_i
sumi 为桶下标分装所有的前缀和,用 vector
存储,桶内放的是前缀和下标。
然后从前往后考虑左端点 i i i,找到 s u m i sum_i sumi 的那个桶,以 j j j 为分解线二分出最大的小于 j j j 的位置 p p p,然后桶内前 p p p 个的点对应的 a n s ans ans 都可以差分 + 1 +1 +1。
显然也不能枚举 1 ∼ p 1\sim p 1∼p 一个一个加,所以在桶里面也进行前缀和差分,在 1 1 1 位置 + 1 +1 +1,在 p + 1 p+1 p+1 位置 − 1 -1 −1。
每次在二分之前,都得先在 s u m i sum_i sumi 的桶内把第一个元素丢出去,在丢之前又得把差分数组及时传递。
所以在 i i i 时,所有桶内都只有 i + 1 ∼ ∣ S ∣ i+1\sim |S| i+1∼∣S∣ 的前缀和(这里的前缀和是指 1 1 1 开始的),并且桶内的差分是更新过的,
意思就是如果要扔去某个桶的对头 x x x(桶内存的是下标),对头下一个是 y y y,那么差分数组更新一下 a n s y + = a n s x ans_y+=ans_x ansy+=ansx。
因为第二个部分的桶是从前往后做,第一个部分是从后往前做,顺序不同所以要分开做。
桶内前缀差分,差分完后,桶外后缀差分。
时间复杂度: O ( n log n ) O(n\log n) O(nlogn)。
只能通过 70 % 70\% 70% 的数据点 ∣ S ∣ ≤ 1 0 6 |S|\le 10^6 ∣S∣≤106。
solution
凸(艹皿艹 ) O ( n log n ) O(n\log n) O(nlogn) 尼玛思维代码量比 O ( n ) O(n) O(n) 还难。
首先处理一下哪些括号是匹配的,用栈来做。
w(X()X(Z()Z)X(Y()Y()Y)X()X)W
,把括号之间的间隔标号,对于一堆匹配的括号,即合法括号序列,要求两端的标号相同。
第一次见这种处理,是小生孤陋寡闻了Orzqwqqwq
问题转化为,有若干个标号,要统计位置 i i i 两端有多少对标号是相同的。
dls题解就给个思路,还是得自己仔细想具体代码算法实现。qwq
对于每个匹配括号 ( ) () (),对于左括号 i i i ,记录一个 u p i up_i upi, u p i up_i upi 是最小的能包含这对匹配括号的另一对匹配括号的左括号位置。
即 (..(..)...)
,第一个左括号就是
u
p
i
up_i
upi,这期间要保证不存在
u
p
i
<
x
<
i
,
m
a
t
c
h
(
i
)
<
y
<
m
a
t
c
h
(
u
p
i
)
,
x
,
y
up_i<x<i,match(i)<y<match(up_i),x,y
upi<x<i,match(i)<y<match(upi),x,y 能匹配。
类似前缀和差分, a n s u p i → a n s i ans_{up_i}\rightarrow ans_i ansupi→ansi。
用 a i , b i : a_i,b_i: ai,bi: 记录左右的连续可完美匹配的括号。
即 (..()..)(..)(..)
第三个左括号和第三个右括号假设是现在
i
i
i 对应的匹配,那么可以选择第一个左括号到第三个右括号,第一个左括号到第四个右括号。
这就用 a i ∗ b m a t c h ( i ) a_i*b_{match(i)} ai∗bmatch(i) 来统计,具体实现可以看 std。
时间复杂度: O ( n ) O(n) O(n)。
std
#include <bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0);
using namespace std;
const int N = 1e7 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double PI = acos(-1);
template<class T, class S> inline void add(T &a, S b) {
a += b;
if (a >= mod)
a -= mod;
}
template<class T, class S> inline void sub(T &a, S b) {
a -= b;
if (a < 0)
a += mod;
}
template<class T, class S> inline bool chkmax(T &a, S b) {
return a < b ? a = b, true : false;
}
template<class T, class S> inline bool chkmin(T &a, S b) {
return a > b ? a = b, true : false;
}
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int n;
int stk[N], top;
int match[N], a[N], b[N], up[N];
int ans[N];
char s[N];
int main() {
freopen("bracket.in", "r", stdin);
freopen("bracket.out", "w", stdout);
scanf("%s", s + 1);
n = strlen(s + 1);
top = 0;
for (int i = 1; i <= n; i++) {
if (s[i] == '(') { //左右括号匹配 up[i]:i位置前最靠近i的还未匹配的左括号
/*
因为up[i]是还未匹配的,所以up[i]匹配的右括号一定是包含i的(如果能匹配的话)
即长相为 (..(..)...)
*/
up[i] = stk[top];
stk[++top] = i;
} else if (top) {
match[i] = stk[top];
match[stk[top]] = i;
top--;
}
}
for (int i = 1; i <= n; i++) {
if (!match[i] || s[i] == '(')
continue;
b[i] = b[match[i] - 1] + 1; //b[i]标号右括号 b[i]:i位置右括号的标记应为匹配的左括号前一个位置的标号+1
}
for (int i = n; i >= 1; i--) {
if (!match[i] || s[i] == ')')
continue;
a[i] = a[match[i] + 1] + 1;//a[i]标号左括号 a[i]:i位置左括号的标记应为匹配的右括号后一个位置的标号+1
}
//+1表示只选i-j这对匹配括号
for (int i = 1; i <= n; i++) {
if (!match[i] || s[i] == ')')
continue;
ans[i] = 1LL * a[i] * b[match[i]] % mod;
if (up[i])
add(ans[i], ans[up[i]]);
ans[match[i]] = ans[i];
}
LL ret = 0;
for (int i = 1; i <= n; i++) {
ret += 1LL * ans[i] * i % mod;
}
printf("%lld\n", ret);
return 0;
}