[2021-09-02 contest]CF1251C,可达性统计(bitset优化dp),Boomerang Tournament(状压dp),小蓝的好友(mrx)(treap平衡树)

本文介绍了三场编程竞赛的题目,涉及整数最小化、有向无环图的可达性统计和回旋镖锦标赛的排名计算。通过观察和算法优化,分别使用归并排序、拓扑排序和动态规划解决这些问题。文章展示了如何在实际问题中运用编程思维和数据结构,如队列、bitset和treap。
摘要由CSDN通过智能技术生成

CF1251C Minimize The Integer

…………………

给你一个大整数 a a a,它由 n n n位数字,也可能有前导零。

现在给你一种操作规则:如果相邻的两个数字的奇偶性不同,那么你就可以交换它们。

现在可以做任意次操作(可能一次都不做),求出通过这些操作可以获得的最小整数是多少。

答案可以包含前导零


observation : 相邻位才能交换,且要奇偶不同,所以同奇偶间的顺序一定不会改变(不满足交换条件)

奇偶不同之间的数就可以相互交换

这其实是一个归并排序的过程,两个队列模拟即可


#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
#define maxn 300005
queue < int > odd, even, ans;
char s[maxn];
int n;

int main() {
	scanf( "%s", s + 1 );
	n = strlen( s + 1 );
	for( int i = 1;i <= n;i ++ ) {
		int x = s[i] - '0';
		if( x & 1 ) odd.push( x );
		else even.push( x );
	}
	while( ! odd.empty() and ! even.empty() ) {
		if( odd.front() < even.front() ) ans.push( odd.front() ), odd.pop();
		else ans.push( even.front() ), even.pop();
	}
	while( ! odd.empty() ) ans.push( odd.front() ), odd.pop();
	while( ! even.empty() ) ans.push( even.front() ), even.pop(); 
	while( ! ans.empty() ) printf( "%d", ans.front() ), ans.pop();
	return 0;
}

acwing164:可达性统计

给定一张 n n n个点 m m m条边的有向无环图,你需要分别统计从每个点出发能够到达的点的数量


observation : 保证是有向无环图,明显可以用拓扑解决有向图问题

但是很有可能多个点到的点有重复,那么单纯的用 d p i dp_i dpi( i i i所能到达的点)进行累加便不可取,会算重

数据范围 n ≤ 30000 n\le 30000 n30000,发现 n 2 / 32 n^2/32 n2/32其实是可以接受的

那么就可以用bitset优化,直接记录能到达的点集,那么转移就是取并

最后统计1的个数就行,这就直接知道到哪些点,便不会算重了


#include <iostream>
#include <bitset>
#include <vector>
#include <cstdio>
#include <queue>
#include <map>
using namespace std;
#define maxn 30005
map < pair < int, int >, int > mp;
bitset < maxn > dp[maxn];
vector < int > G[maxn];
queue < int > q;
int n, m;
int ans[maxn], d[maxn];

int main() {
	scanf( "%d %d", &n, &m );
	for( int i = 1, u, v;i <= m;i ++ ) {
		scanf( "%d %d", &u, &v );
		if( mp[make_pair( u, v )] ) continue;
		else mp[make_pair( u, v )] = 1;
		G[v].push_back( u );
		d[u] ++;
	}
	for( int i = 1;i <= n;i ++ ) 
		if( ! d[i] ) q.push( i );
	while( ! q.empty() ) {
		int u = q.front(); q.pop();
		dp[u][u] = 1;
		for( auto v : G[u] ) {
			d[v] --;
			dp[v] |= dp[u];
			if( ! d[v] ) q.push( v );
		}
	}
	for( int i = 1;i <= n;i ++ )
		printf( "%d\n", dp[i].count() );
	return 0;
}

Facebook Hacker Cup 2016 Round 1 Boomerang Tournament

这个周末,期待已久的BIT(回旋镖邀请赛)将举行! N N N个回旋镖选手将随机配对,进行单淘汰赛。

可以按以下方式解释这种锦标赛规则:

  1. N N N个选手以某种顺序排列在队列中(有序列表)
  2. 如果队列当前仅包含 1 1 1个选手,则比赛结束,该选手作为冠军
  3. 否则,取出排在队列最前面的 2 2 2名选手,让他们比赛
  4. 比赛的获胜者重新插入到队列的最后面
  5. 从步骤 2 2 2重复

当第 i i i个和第 j j j个选手比赛时

  • 如果 W i , j = 1 W_{i,j} = 1 Wi,j=1时则第 i i i个选手将获胜
  • 否则,第j个选手将获胜。
  • 请注意,对于所有 ( 1 ≤ i , j ≤ N ) , W i , j = 0 / 1 (1≤i,j≤N),W_{i,j}= 0/1 1ijNWi,j=0/1,并且 W i , i = 0 W_{i,i}= 0 Wi,i=0(无论如何也不会与自己对战),并且 W   i , j   ≠ W   j , i   W~i,j~≠W~j,i~ W ij =W ji (如果 i ≠ j i ≠j i=j

注意: A击败B,B击败C,C击败A是有可能的

比赛结束后,每个选手都会获得排名(即使他们在比赛中没能幸存下来)

某个选手T的排名是一个整数,这个整数比排在他前面的且离他最近的某个选手S排名大1,

S赢得比赛的场数严格大于T赢得比赛的场数.

因为初始对局的顺序未知,所以对于每个选手,想知道他们最终可能会获得的最好(最小)和最差(最大)排名.

T , n ≤ 16 T,n\le 16 T,n16,保证 n n n2的幂


最坏名次很好求,只要有人能打败他,他就可以在第一轮被淘汰

最好名次用状压

d p s , i : dp_{s,i}: dps,i: 在对抗人数集合为 s s s状态时, i i i成为最后胜者的可行性0/1 不可以/可以

  • 显然对抗人数一定是 2 2 2的幂,这可以剪枝掉很多不必要的状态

写法尝试了很多种

  • 写法一

    枚举状态 s s s,枚举 i i i,再枚举状态 t t t,并保证 s , t s,t s,t 1 1 1个数一样(是同一层的角逐),还要枚举 j j j表示 t t t的优胜者

    就算加了很多剪枝,判断优胜者是否属于集合,是否可行

    但仍有很多不必要的枚举

  • 优化写法一后的写法二

    b i t k bit_k bitk 1 1 1的个数为 k k k的所有集合 s s s

    n u m s num_s nums s s s状态中为 1 1 1的位置,相当于预处理出所有参赛人员,最后的优胜者一定对应位置为 1 1 1

    n n n达到 16 16 16的时候 s , t s,t s,t的枚举还是会超时

  • 优化写法二的最终写法

    枚举状态 n o w now now,以及该层比赛的上一次比赛(半决赛) s s s,通过 ⨁ \bigoplus 可以求得另一半决赛的状态 t t t

    然后枚举两场半决赛的各自的优胜者

    根据优胜者之间 g g g的关系,决出最后的胜者成为 n o w now now状态的优胜者

    再配合上一下集合完全包含的剪枝即可通过了

n = 16 n=16 n=16状态数为 65536 65536 65536剪枝后又无法承受平方的枚举

但是如果枚举一次后,里面枚举的只有一半,状态数就会锐减为 2 8 2^8 28

最后对于每一个 i i i找出自己是优胜者的所有比赛中参赛人员最多的( 1 1 1最多的状态)

就是最好成绩


#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
vector < int > bit[20], num[1 << 20];
int dp[1 << 16][20], g[20][20];
int T, n;
bool ok[20];

int lowbit( int x ) { return x & -x; }

int main() {
	ok[1] = ok[2] = ok[4] = ok[8] = ok[16] = 1;
	scanf( "%d", &T );
	for( int Case = 1;Case <= T;Case ++ ) {
		scanf( "%d", &n );
		for( int i = 0;i < n;i ++ )
			for( int j = 0;j < n;j ++ )
				scanf( "%d", &g[i][j] );
		memset( dp, 0, sizeof( dp ) );
		for( int i = 0;i < n;i ++ ) dp[1 << i][i] = 1;
		for( int i = 1;i <= n;i ++ ) bit[i].clear();
		for( int s = 1;s < ( 1 << n );s ++ ) 
			if( ! ok[__builtin_popcount( s )] ) continue;
			else {
				bit[__builtin_popcount( s )].push_back( s );
				if( num[s].size() ) continue;
				else
					for( int i = 0;i < n;i ++ )
						if( s >> i & 1 ) num[s].push_back( i );
			}
		for( int k = 2;k <= n;k <<= 1 )
			for( int now : bit[k] )
				for( int s : bit[k >> 1] ) {
					if( ( now & s ) != s ) continue;
					int t = now ^ s;
					if( s > t ) continue;
					for( int i : num[s] ) {
						if( ! dp[s][i] ) continue;
						for( int j : num[t] ) {
							if( ! dp[t][j] ) continue;
							if( g[i][j] ) dp[now][i] = 1;
							else dp[now][j] = 1;
						}
					}
				}
		printf( "Case #%d:\n", Case );
		for( int i = 0;i < n;i ++ ) {
			bool flag = 1;
			for( int j = 0;j < n;j ++ )
				if( i == j ) continue;
				else flag &= g[i][j];
			int best, worst, cnt = 0;
			if( flag ) worst = 1;
			else worst = ( n >> 1 ) + 1;
			for( int s = 1;s < ( 1 << n );s ++ )
				if( dp[s][i] ) cnt = max( cnt, __builtin_popcount( s ) );
			if( cnt == n ) best = 1;
			else if( cnt == ( n >> 1 ) ) best = 2;
			else if( cnt == ( n >> 2 ) ) best = 3;
			else if( cnt == ( n >> 3 ) ) best = 5;
			else best = 9;
			printf( "%d %d\n", best, worst );
		}
	}
	return 0;
}

[Zjoi2012]小蓝的好友(mrx)

终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的关键人物——小蓝的好友。

在帮小蓝确定了旅游路线后,小蓝的好友也不会浪费这个难得的暑假。与小蓝不同,小蓝的好友并不想将时间花在旅游上,而是盯上了最近发行的即时战略游戏——SangoCraft。但在前往通关之路的道路上,一个小游戏挡住了小蓝的好友的步伐。

“国家的战争其本质是抢夺资源的战争”是整款游戏的核心理念,这个小游戏也不例外。简单来说,用户需要在给定的长方形土地上选出一块子矩形,而系统随机生成了N个资源点,位于用户所选的长方形土地上的资源点越多,给予用户的奖励也越多。悲剧的是,小蓝的好友虽然拥有着极其优秀的能力,但同时也有着极差的RP,小蓝的好友所选的区域总是没有一个资源点。

终于有一天,小蓝的好友决定投诉这款游戏的制造厂商,为了搜集证据,小蓝的好友想算出至少包含一个资源点的区域的数量。作为小蓝的好友,这自然是你分内之事。

Input

第一行包含两个由空格隔开的正整数R,C,N,表示游戏在一块[1,R]x[1,C]的地图上生成了N个资源点

接下来有N行,每行包含两个整数 x,y,表示这个资源点的坐标(1<=x<=R,1<=Y<=c)

Output

输出文件应仅包含一个整数,表示至少包含一个资源点的区域的数量

具体的说,设N个资源点的坐标为(i=1…n),你需要计算有多少个四元组(LB,DB,RB,UB)满足1<=LB<=RB<=R,1<=DB<=UB<=C,且存在一个i使得LB<=Xi<=RB,DB<=Yi<=UB均成立

Sample Input

5 5 4
1 2
2 3
3 5
4 1

Sample Output

139

Hint

【数据范围】

对于100%的数据,R,C<=40000,N<=100000,资源点的位置两两不同,且位置为随机生成


首先转换成,总矩阵数量减去一条鱼都不包含的矩阵数量

然后枚举每一行 i i i,当做矩阵的底

这就有点像求最大全 1 1 1矩阵了

对于每一列处理出在 i i i行以上最近的鱼的距离,当成这一列的高

那这就是刚做的笛卡尔树了

在这里插入图片描述

根据笛卡尔树的根,把左右儿子分开独立计算

贡献为 ( h [ x ] − h [ f a [ x ] ] ) ∗ s i z [ x ] ∗ ( s i z [ x ] + 1 ) / 2 (h[x]-h[fa[x]])*siz[x]*(siz[x]+1)/2 (h[x]h[fa[x]])siz[x](siz[x]+1)/2

在这里插入图片描述

当枚举行往下移的时候,相当于整体+1,如果某列在当前枚举行有鱼,高度设为 0 0 0就可以了

相当于对笛卡尔树进行两种操作,全局+1和单点修改为 0 0 0

这可以用fhq-treap暴力不动树

但是笛卡尔树作为一种二叉树,又满足小根堆性质,发现用带旋treap维护树不会改变本质


#include <cstdio>
#include <vector>
using namespace std;
#define maxn 100005
#define int long long
#define lson t[x].son[0]
#define rson t[x].son[1]
vector < int > g[maxn];
struct node { int l, r, h, f, tag, siz, son[2]; }t[maxn];
int dp[maxn];
int n, m, N;

int calc( int x ) { return x * ( x + 1 ) >> 1; }

void pushup( int x ) {
	t[x].siz = t[lson].siz + t[rson].siz + 1;
	dp[x] = dp[lson] + dp[rson] + ( t[x].h - t[t[x].f].h ) * calc( t[x].siz );
}

void rotate( int x ) {
	int fa = t[x].f;
	int Gfa = t[fa].f;
	int k = t[fa].son[1] == x;
	if( Gfa ) t[Gfa].son[t[Gfa].son[1] == fa] = x;
	t[x].f = Gfa;
	t[fa].son[k] = t[x].son[k ^ 1];
	t[t[x].son[k ^ 1]].f = fa;
	t[x].son[k ^ 1] = fa;
	t[fa].f = x;
	if( t[fa].son[k] ) pushup( t[fa].son[k] );
	pushup( fa );
	pushup( x );
}

void add( int x, int val ) {
	t[x].h += val;
	t[x].tag += val;
	pushup( x );
}

void pushdown( int x ) {
	if( t[x].f ) pushdown( t[x].f );
	if( lson ) add( lson, t[x].tag );
	if( rson ) add( rson, t[x].tag );
	t[x].tag = 0; 
}

int build( int l, int r ) {
	if( l > r ) return 0;
	int x = ( l + r ) >> 1;
	lson = build( l, x - 1 );
	rson = build( x + 1, r );
	if( lson ) t[lson].f = x;
	if( rson ) t[rson].f = x;
	pushup( x );
	return x;
}

signed main() {
	scanf( "%lld %lld %lld", &n, &m, &N );
	int rt = build( 1, m );
	for( int i = 1, x, y;i <= N;i ++ ) {
		scanf( "%lld %lld", &x, &y );
		g[x].push_back( y );
	}
	int ans = 0;
	for( int i = 1;i <= n;i ++ ) {
		add( rt, 1 );
		for( int x : g[i] ) {
			pushdown( x );
			while( t[x].f ) rotate( x );
			t[x].h = 0;
			if( lson ) pushup( lson );
			if( rson ) pushup( rson );
			pushup( x );
			rt = x;
		}
		ans += dp[rt];
	}
	printf( "%lld\n", calc( n ) * calc( m ) - ans );
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值