#727-Div.2
A. Contest Start
数学题,分类讨论
- 一般的,一段区间 [ l , r ] [l,r] [l,r]会对后面固定人数造成影响,假设是 k k k
- 最后 k k k个人,因为自己后面的人数不够 k k k,所以贡献总和是 k × ( k − 1 ) 2 \frac{k\times(k-1)}{2} 2k×(k−1)
显然固定人数为 t x \frac{t}{x} xt
#include <cstdio>
#define int long long
int T, n, x, t;
signed main() {
scanf( "%lld", &T );
while( T -- ) {
scanf( "%lld %lld %lld", &n, &x, &t );
int k = t / x;
if( n < k ) printf( "%lld\n", n * ( n - 1 ) / 2 );
else printf( "%lld\n", ( n - k ) * k + ( k - 1 ) * k / 2 );
}
return 0;
}
B. Love Song
前缀和统计 [ l , r ] [l,r] [l,r]区间内每个字符的个数 × \times ×字符在字母表的排位
#include <cstdio>
#define maxn 100005
int n, Q;
char s[maxn];
int cnt[maxn][26];
int main() {
scanf( "%d %d %s", &n, &Q, s + 1 );
for( int i = 1;i <= n;i ++ ) {
for( int j = 0;j < 26;j ++ )
cnt[i][j] = cnt[i - 1][j];
cnt[i][s[i] - 'a'] ++;
}
while( Q -- ) {
int l, r;
scanf( "%d %d", &l, &r );
int ans = 0;
for( int i = 0;i < 26;i ++ )
ans += ( i + 1 ) * ( cnt[r][i] - cnt[l - 1][i] );
printf( "%d\n", ans );
}
return 0;
}
C. Stable Groups
贪心。
排个序,把能放在一起的放在一起,然后记录相邻组之间需要的“桥”的个数,用优先队列存储
显然,需要越少越先满足,留下更多的 k k k满足后面
#include <queue>
#include <cstdio>
#include <algorithm>
using namespace std;
#define int long long
#define maxn 200005
priority_queue < int, vector < int >, greater < int > > q;
int n, k, x;
int a[maxn];
signed main() {
scanf( "%lld %lld %lld", &n, &k, &x );
for( int i = 1;i <= n;i ++ )
scanf( "%lld", &a[i] );
sort( a + 1, a + n + 1 );
int cnt = 1;
for( int i = 1;i < n;i ++ )
if( a[i + 1] - a[i] > x ) {
cnt ++;
q.push( ( a[i + 1] - a[i] - 1 ) / x );
}
while( ! q.empty() ) {
if( q.top() <= k ) k -= q.top(), cnt --, q.pop();
else break;
}
printf( "%lld\n", cnt );
return 0;
}
D. PriceFixed
贪心模拟,按 b b b排序
用最难满足的购买尽可能触碰易满足的 b b b
#include <cstdio>
#include <algorithm>
using namespace std;
#define int long long
#define maxn 100005
struct node {
int a, b;
}it[maxn];
int n;
bool cmp( node x, node y ) {
return x.b > y.b;
}
signed main() {
scanf( "%lld", &n );
for( int i = 1;i <= n;i ++ )
scanf( "%lld %lld", &it[i].a, &it[i].b );
sort( it + 1, it + n + 1, cmp );
int tot = 0, ans = 0;
for( int i = 1;i <= n;i ++ ) {
if( tot >= it[n].b ) {
ans += it[n].a;
tot += it[n].a;
it[n].a = 0;
i --;
n --;
}
else if( tot + it[i].a < it[n].b ) {
tot += it[i].a;
ans += ( it[i].a << 1 );
it[i].a = 0;
} else {
int t = it[n].b - tot;
it[i].a -= t;
ans += ( t << 1 );
tot += t;
ans += it[n].a;
tot += it[n].a;
it[n].a = 0;
n --;
i --;
}
}
if( ! it[n].a )
printf( "%lld\n", ans );
else {
if( tot >= it[n].b )
printf( "%lld\n", ans + it[n].a );
else if( it[n].a + tot <= it[n].b )
printf( "%lld\n", ans + ( it[n].a << 1 ) );
else {
int t = it[n].b - tot;
ans += ( t << 1 );
it[n].a -= t;
ans += it[n].a;
printf( "%lld\n", ans );
}
}
return 0;
}
E. Game with Cards
设 L i , j : L_{i,j}: Li,j: 左手为第 i i i个数,右手为第 j j j个数, i < j i<j i<j,是否合法
R i , j : R_{i,j}: Ri,j: 右手为第 i i i个数,左手为第 j j j个数, i < j i<j i<j,是否合法
显然有暴力的
n
2
n^2
n2转移
L
i
,
j
=
[
a
i
∈
[
a
l
,
j
,
a
r
,
j
⋂
a
j
∈
[
b
l
,
j
,
b
r
,
j
]
]
=
{
L
i
,
j
−
1
i
≠
j
−
1
∑
k
=
1
j
−
2
R
k
,
j
−
1
i
=
j
−
1
R
i
,
j
=
[
a
i
∈
[
b
l
,
j
,
b
r
,
j
⋂
a
j
∈
[
a
l
,
j
,
a
r
,
j
]
]
=
{
R
i
,
j
−
1
i
≠
j
−
1
∑
k
=
1
j
−
2
L
k
,
j
−
1
i
=
j
−
1
L_{i,j}=\bigg[a_i\in [a_{l,j},a_{r,j}\bigcap a_j\in[b_{l,j},b_{r,j}]\bigg]=\begin{cases}L_{i,j-1}&&&&&i≠j-1\\\sum_{k=1}^{j-2}R_{k,j-1}&&&&&i=j-1\end{cases}\\R_{i,j}=\bigg[a_i\in [b_{l,j},b_{r,j}\bigcap a_j\in[a_{l,j},a_{r,j}]\bigg]=\begin{cases}R_{i,j-1}&&&&&i≠j-1\\\sum_{k=1}^{j-2}L_{k,j-1}&&&&&i=j-1\end{cases}\\
Li,j=[ai∈[al,j,ar,j⋂aj∈[bl,j,br,j]]={Li,j−1∑k=1j−2Rk,j−1i=j−1i=j−1Ri,j=[ai∈[bl,j,br,j⋂aj∈[al,j,ar,j]]={Ri,j−1∑k=1j−2Lk,j−1i=j−1i=j−1
显然是可以用线段树维护成
l
o
g
log
log的
#include <cstdio>
#define maxn 100005
int n, m;
struct SegMentTree {
struct node {
int l, r, tag, id, s;
}t[maxn * 30];
int cnt = 0, root;
#define lson t[now].l
#define rson t[now].r
void pushdown( int now ) {
if( t[now].tag ) {
t[lson].s = t[rson].s = 0;
t[lson].tag = t[rson].tag = t[now].tag;
t[now].tag = 0;
}
}
void clear( int now, int l, int r, int L, int R ) {
if( r < L || R < l ) return;
if( ! now ) return;
if( L <= l && r <= R ) {
t[now].s = 0;
t[now].tag = 1;
return;
}
pushdown( now );
int mid = ( l + r ) >> 1;
clear( lson, l, mid, L, R );
clear( rson, mid + 1, r, L, R );
t[now].s = t[lson].s | t[rson].s;
}
void insert( int &now, int l, int r, int pos, int id ) {
if( ! now ) now = ++ cnt;
if( l == r ) {
t[now].s = 1;
t[now].id = id;
return;
}
pushdown( now );
int mid = ( l + r ) >> 1;
if( pos <= mid ) insert( lson, l, mid, pos, id );
else insert( rson, mid + 1, r, pos, id );
t[now].s = t[lson].s | t[rson].s;
}
int query( int now = 1, int l = 0, int r = m ) {
if( l == r ) return t[now].id;
pushdown( now );
int mid = ( l + r ) >> 1;
if( t[lson].s ) return query( lson, l, mid );
else return query( rson, mid + 1, r );
}
bool check() { return t[1].s; }
}L, R;
struct read {
int x, L_rangel, L_ranger, R_rangel, R_ranger;
read(){}
read( int X, int AL, int AR, int BL, int BR ) {
x = X, L_rangel = AL, L_ranger = AR, R_rangel = BL, R_ranger = BR;
}
}MS[maxn];
int ansl[maxn], ansr[maxn], ans[maxn];
bool ChooseL[maxn], ChooseR[maxn];
int main() {
scanf( "%d %d", &n, &m );
L.insert( L.root, 0, m, 0, 0 );
R.insert( R.root, 0, m, 0, 0 );
for( int i = 1, x, L_rangel, L_ranger, R_rangel, R_ranger;i <= n;i ++ ) {
scanf( "%d %d %d %d %d", &x, &L_rangel, &L_ranger, &R_rangel, &R_ranger );
MS[i] = read( x, L_rangel, L_ranger, R_rangel, R_ranger );
bool l_ok = L.check(), r_ok = R.check();
if( l_ok ) ansl[i] = L.query();
else ansl[i] = -1;
if( r_ok ) ansr[i] = R.query();
else ansr[i] = -1;
if( L_rangel <= x && x <= L_ranger ) {
//x is included in L->[l,r] which is suitable for request of option 0
R.clear( R.root, 0, m, 0, R_rangel - 1 );
R.clear( R.root, 0, m, R_ranger + 1, m );
if( i > 1 && R_rangel <= MS[i - 1].x && MS[i - 1].x <= R_ranger && l_ok )
R.insert( R.root, 0, m, MS[i - 1].x, i - 1 ), ChooseR[i] = 1;
//however we must also sure that the number we keep on right hand is also included in R->[l,r]
//only both are acceptable can we do option 0 truly
}
else R.clear( R.root, 0, m, 0, m );//otherwise the whole array of L should be cleared
if( R_rangel <= x && x <= R_ranger ) {
L.clear( L.root, 0, m, 0, L_rangel - 1 );
L.clear( L.root, 0, m, L_ranger + 1, m );
if( i > 1 && L_rangel <= MS[i - 1].x && MS[i - 1].x <= L_ranger && r_ok )
L.insert( L.root, 0, m, MS[i - 1].x, i - 1 ), ChooseL[i] = 1;
}
else L.clear( L.root, 0, m, 0, m );
}
if( L.check() || R.check() ) {//backward print(END -> BEGIN)
printf( "Yes\n" );
int pos = n, lim, f;
if( L.check() ) lim = L.query(), f = 0;
else lim = R.query(), f = 1;
while( pos ) {
if( f ) {//this option choose 0(replace left)
ans[pos] = 0;
if( pos > lim + 1 ) goto out;
else f ^= 1, lim = ansl[pos];
}
else {//this option choose 1(replace right)
ans[pos] = 1;
if( pos > lim + 1 ) goto out;
else f ^= 1, lim = ansr[pos];
}
out : pos --;
}
for( int i = 1;i <= n;i ++ )
printf( "%d ", ans[i] );
}
else printf( "No\n" );
return 0;
}
F. Strange Array
连着两题线段树好,很好!
定义 S 1 : [ l , r ] S_1:[l,r] S1:[l,r] 中小于 a i a_i ai的个数, S 2 : [ l , r ] S_2:[l,r] S2:[l,r] 中等于 a i a_i ai的个数, S 3 : [ l , r ] S_3:[l,r] S3:[l,r] 中大于 a i a_i ai的个数
显然位置
i
i
i的奇怪度为
max
{
S
1
+
S
2
−
⌈
S
1
+
S
3
+
S
2
+
1
2
⌉
⌈
S
1
+
S
3
+
S
2
+
1
2
⌉
−
(
S
1
+
1
)
\max\begin{cases} S_1+S_2-\lceil\frac{S_1+S_3+S_2+1}{2}\rceil\\ \lceil\frac{S_1+S_3+S_2+1}{2}\rceil-(S_1+1) \end{cases}
max{S1+S2−⌈2S1+S3+S2+1⌉⌈2S1+S3+S2+1⌉−(S1+1)
发现:同时在比
a
i
a_i
ai大和比
a
i
a_i
ai小的数中扔掉若干个相同的数,答案并不会发生变化
如此说来有用的只有二者的差,S1S2S3
如果 a i a_i ai放在 S 2 S_2 S2的第一位,我们则非常希望 m a x { S 3 } , m i n { S 1 } max\{S_3\},min\{S_1\} max{S3},min{S1}这样中位数才会远离 S 2 S_2 S2的第一位
如果 a i a_i ai放在 S 2 S_2 S2的倒数第一位,我们则非常希望 m i n { S 3 } , m a x { S 1 } min\{S_3\},max\{S_1\} min{S3},max{S1}
显然可以线段树维护查询了,将小于等于 a i a_i ai的标记为 − 1 -1 −1
对于若干个相同的 a i a_i ai位置,先查再改是一种情况,改了再查是另一种情况
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 200005
struct node {
int maxx, minn, lazy;
}t[maxn << 2];
vector < int > s[maxn];
int n;
int ans[maxn];
void pushdown( int num ) {
t[num << 1].maxx += t[num].lazy;
t[num << 1].minn += t[num].lazy;
t[num << 1].lazy += t[num].lazy;
t[num << 1 | 1].maxx += t[num].lazy;
t[num << 1 | 1].minn += t[num].lazy;
t[num << 1 | 1].lazy += t[num].lazy;
t[num].lazy = 0;
}
void modify( int num, int l, int r, int L, int R, int val ) {
if( L <= l && r <= R ) {
t[num].lazy += val;
t[num].maxx += val;
t[num].minn += val;
return;
}
pushdown( num );
int mid = ( l + r ) >> 1;
if( L <= mid ) modify( num << 1, l, mid, L, R, val );
if( mid < R ) modify( num << 1 | 1, mid + 1, r, L, R, val );
t[num].maxx = max( t[num << 1].maxx, t[num << 1 | 1].maxx );
t[num].minn = min( t[num << 1].minn, t[num << 1 | 1].minn );
}
int query_max( int num, int l, int r, int L, int R ) {
if( L > R ) return 0;
if( R < l || r < L ) return -1e9;
if( L <= l && r <= R ) return t[num].maxx;
pushdown( num );
int mid = ( l + r ) >> 1;
return max( query_max( num << 1, l, mid, L, R ), query_max( num << 1 | 1, mid + 1, r, L, R ) );
}
int query_min( int num, int l, int r, int L, int R ) {
if( L > R ) return 0;
if( R < l || r < L ) return 1e9;
if( L <= l && r <= R ) return t[num].minn;
pushdown( num );
int mid = ( l + r ) >> 1;
return min( query_min( num << 1, l, mid, L, R ), query_min( num << 1 | 1, mid + 1, r, L, R ) );
}
int main() {
scanf( "%d", &n );
for( int i = 1, x;i <= n;i ++ ) {
scanf( "%d", &x );
s[x].push_back( i );
modify( 1, 1, n, i, n, -1 );
}
for( int i = 1;i <= n;i ++ ) {
for( int j = 0;j < s[i].size();j ++ ) {
//放在众多相同的最后一个->后面的尽量少前面的尽量多
int k = s[i][j];
int l = max( 0, query_max( 1, 1, n, 1, k - 1 ) );//compare with 0 means just choosing k itself
int r = query_min( 1, 1, n, k, n );
ans[k] = max( ans[k], ( l - r + 2 ) / 2 - 1 );
}
for( int j = 0;j < s[i].size();j ++ )
modify( 1, 1, n, s[i][j], n, 2 );
//抵消掉之前i对[i,n]造成的-1影响 然后再变成1后的影响 所以一次性加2
for( int j = 0;j < s[i].size();j ++ ) {
//放在众多相同的第一个->后面的尽量多前面的尽量少
int k = s[i][j];
int l = min( 0, query_min( 1, 1, n, 1, k - 1 ) );
int r = query_max( 1, 1, n, k, n );
ans[k] = max( ans[k], ( r - l ) - ( r - l + 2 ) / 2 );
}
}
for( int i = 1;i <= n;i ++ )
printf( "%d ", ans[i] );
return 0;
}