problem
solution
本题的难点在于如何判定路径之间是否覆盖。
这里我们尝试树常见的 dfs \text{dfs} dfs 序。
考虑 x − y x-y x−y 路径如果要覆盖 u − v u-v u−v 路径需要满足怎样的条件。
以下均假设 d f s ( u ) < d f s ( v ) , d f s ( x ) < d f s ( y ) dfs(u)<dfs(v),dfs(x)<dfs(y) dfs(u)<dfs(v),dfs(x)<dfs(y)。
-
l c a ( u , v ) ≠ u lca(u,v)\ne u lca(u,v)=u。
x x x 必须是 u u u 子树内的一点, y y y 必须是 v v v 子树内的一点。
我们记点 i i i 子树内的 dfs \text{dfs} dfs 序列对应连续区间为 [ l ( i ) , r ( i ) ] [l(i),r(i)] [l(i),r(i)]。
则要 l ( u ) ≤ l ( x ) ≤ r ( u ) ∧ l ( v ) ≤ l ( y ) ≤ r ( v ) l(u)\le l(x)\le r(u)\wedge l(v)\le l(y)\le r(v) l(u)≤l(x)≤r(u)∧l(v)≤l(y)≤r(v)。
其实,我们可以将 ( l ( x ) , l ( y ) ) (l(x),l(y)) (l(x),l(y)) 当成一个点的坐标;
将 ( l ( u ) , l ( v ) ) − ( r ( u ) , r ( v ) ) (l(u),l(v))-(r(u),r(v)) (l(u),l(v))−(r(u),r(v)) 看作左下角为 ( l ( u ) , l ( v ) ) (l(u),l(v)) (l(u),l(v)) 右上角为 ( r ( u ) , r ( v ) ) (r(u),r(v)) (r(u),r(v)) 的矩阵。
发现这个点就是落在这个矩阵内的。
所以问题就是某个点被若干个矩形包含,求这里面的权值第 k k k 小的矩阵。
-
l c a ( u , v ) = u lca(u,v)=u lca(u,v)=u。
x x x 必须属于 u → v u\rightarrow v u→v 走的第一个点子树外的部分, y y y 仍是 v v v 子树内一点。
即,假设 u u u 到 v v v 的路径经过的 u u u 的儿子为 w w w,即路径为 u → w → … v u\rightarrow w\rightarrow\dots v u→w→…v。
则要 1 ≤ l ( x ) < l ( w ) ∨ r ( w ) < l ( x ) ≤ n 1\le l(x)<l(w)\vee r(w)<l(x)\le n 1≤l(x)<l(w)∨r(w)<l(x)≤n, l ( v ) ≤ l ( y ) ≤ r ( v ) l(v)\le l(y)\le r(v) l(v)≤l(y)≤r(v)。
两个条件是独立的。
- 1 ≤ l ( x ) < l ( w ) 1\le l(x)<l(w) 1≤l(x)<l(w),对应矩阵 ( 1 , l ( v ) ) − ( l ( w ) − 1 , r ( v ) ) (1,l(v))-(l(w)-1,r(v)) (1,l(v))−(l(w)−1,r(v))。
- r ( w ) < l ( x ) ≤ n r(w)<l(x)\le n r(w)<l(x)≤n,对应矩阵 ( l ( v ) , r ( w ) + 1 ) − ( r ( v ) , n ) (l(v),r(w)+1)-(r(v),n) (l(v),r(w)+1)−(r(v),n)。
找 l c a lca lca 和某个点的下面一个点,可以倍增,可以树链剖分,好像是链剖分快点,但我们不需要卡这么点常。
对于一个询问,我们可以二分答案,然后把所有权值不大于答案的矩阵激活,统计包含该询问对应点的被激活的矩阵有多少个,根据和 k k k 的关系移动二分端点。
所以我们可以对所有询问套一个整体二分。
而这个矩阵激活我们就可以扫描线地做。
对于 ( x 1 , y 1 ) − ( x 2 , y 2 ) (x1,y1)-(x2,y2) (x1,y1)−(x2,y2) 的矩阵,我们以 x x x 轴做扫描线从左往右扫。
变成 ( y 1 , y 2 , x 1 , 1 ) (y1,y2,x1,1) (y1,y2,x1,1) 在 x = x 1 x=x1 x=x1 的时候把 [ y 1 , y 2 ] + 1 [y1,y2]+1 [y1,y2]+1, ( y 1 , y 2 , x 2 + 1 , − 1 ) (y1,y2,x2+1,-1) (y1,y2,x2+1,−1) 在 x = x 2 x=x2 x=x2 的时候把 [ y 1 , y 2 ] − 1 [y1,y2]-1 [y1,y2]−1。
数据结构仍然使用树状数组。
由于使用的是扫描线,所以一开始要将所有询问按 x x x 排序,并且将矩阵按权值排序。
且每次整体二分内部都要将权值属于 [ l , m i d ] [l,mid] [l,mid] 区间的矩阵重新按 x x x 轴排序。
时间复杂度 O ( n log 2 n ) O(n\log^2n) O(nlog2n) 。
code
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 40005
vector < int > G[maxn];
int dep[maxn], st[maxn], ed[maxn];
int f[maxn][16];
int cnt;
void dfs( int u, int fa ) {
dep[u] = dep[fa] + 1, f[u][0] = fa, st[u] = ++ cnt;
for( int i = 1;i < 16;i ++ ) f[u][i] = f[f[u][i - 1]][i - 1];
for( int v : G[u] ) if( v ^ fa ) dfs( v, u );
ed[u] = cnt;
}
int lca( int u, int v ) {
if( dep[u] < dep[v] ) swap( u, v );
for( int i = 15;~ i;i -- ) if( dep[f[u][i]] >= dep[v] ) u = f[u][i];
if( u == v ) return u;
for( int i = 15;~ i;i -- ) if( f[u][i] ^ f[v][i] ) u = f[u][i], v = f[v][i];
return f[u][0];
}
int top( int u, int d ) {
for( int i = 15;~ i;i -- ) if( d >> i & 1 ) u = f[u][i]; return u;
}
int cntg, n, m1, m2;
int ans[maxn];
struct scan { int l, r, x, op; }s[maxn << 2];
struct matrix { int x1, y1, x2, y2, w; }g[maxn << 2];
struct query { int x, y, k, id; }q[maxn], L[maxn], R[maxn];
namespace BIT {
int t[maxn];
void add( int l, int r, int k ) {
for( ;l <= n;l += l & -l ) t[l] += k;
for( ;r <= n;r += r & -r ) t[r] -= k;
}
int ask( int x ) {
int sum = 0;
for( ;x;x -= x & -x ) sum += t[x];
return sum;
}
}
void solve( int l, int r, int ql, int qr ) {
if( ql > qr ) return;
if( l == r ) { for( int i = ql;i <= qr;i ++ ) ans[q[i].id] = g[l].w; return; }
int mid = l + r >> 1; cnt = 0;
for( int i = l;i <= mid;i ++ ) {
s[++ cnt] = (scan){ g[i].y1, g[i].y2, g[i].x1, 1 };
s[++ cnt] = (scan){ g[i].y1, g[i].y2, g[i].x2 + 1, -1 };
}
sort( s + 1, s + cnt + 1, []( scan a, scan b ) { return a.x < b.x; } );
int cntl = 0, cntr = 0, j = 1;
for( int i = ql;i <= qr;i ++ ) {
for( ;j <= cnt and s[j].x <= q[i].x;j ++ ) BIT :: add( s[j].l, s[j].r + 1, s[j].op );
int k = BIT :: ask( q[i].y );
if( q[i].k <= k ) L[++ cntl] = q[i];
else q[i].k -= k, R[++ cntr] = q[i];
}
for( int i = 1;i < j;i ++ ) BIT :: add( s[i].l, s[i].r + 1, -s[i].op );//不一定把l~mid的矩阵都挂在了树上的
for( int i = 1;i <= cntl;i ++ ) q[ql + i - 1] = L[i];
for( int i = 1;i <= cntr;i ++ ) q[ql + cntl + i - 1] = R[i];
solve( l, mid, ql, ql + cntl - 1 );
solve( mid + 1, r, ql + cntl, qr );
}
int main() {
scanf( "%d %d %d", &n, &m1, &m2 );
for( int i = 1, u, v;i < n;i ++ ) {
scanf( "%d %d", &u, &v );
G[u].push_back( v );
G[v].push_back( u );
}
dfs( 1, 0 );
for( int i = 1, u, v, w;i <= m1;i ++ ) {
scanf( "%d %d %d", &u, &v, &w );
if( st[u] > st[v] ) swap( u, v );
int x = lca( u, v );
if( x ^ u ) g[++ cntg] = (matrix){ st[u], st[v], ed[u], ed[v], w };
else {
x = top( v, dep[v] - dep[u] - 1 );
if( st[x] ^ 1 ) g[++ cntg] = (matrix){ 1, st[v], st[x] - 1, ed[v], w };
if( ed[x] ^ n ) g[++ cntg] = (matrix){ st[v], ed[x] + 1, ed[v], n, w };
}
}
for( int i = 1, u, v, k;i <= m2;i ++ ) {
scanf( "%d %d %d", &u, &v, &k );
if( st[u] > st[v] ) swap( u, v );
q[i] = (query){ st[u], st[v], k, i };
}
sort( q + 1, q + m2 + 1, [](query a, query b) { return a.x < b.x; } );
sort( g + 1, g + cntg + 1, [](matrix a, matrix b){ return a.w < b.w; } );
solve( 1, cntg, 1, m2 );
for( int i = 1;i <= m2;i ++ ) printf( "%d\n", ans[i] );
return 0;
}