[CQOI2017] 小Q的表格(分块 + 整除分块 + 数学 + 前缀和)

problem

luogu-P3700

solution

  • f ( a , b ) = f ( b , a ) f(a,b)=f(b,a) f(a,b)=f(b,a) 意味着我们只用考虑半个棋盘的信息。

  • b ∗ f ( a , a + b ) = ( a + b ) ∗ f ( a , b ) b*f(a,a+b)=(a+b)*f(a,b) bf(a,a+b)=(a+b)f(a,b)

    会发现修改 f ( a , b ) f(a,b) f(a,b) 就影响 f ( a , a + b ) f(a,a+b) f(a,a+b) 进而影响 f ( a , a + 2 b ) … f(a,a+2b)\dots f(a,a+2b)

    对于这个信息,如果对数学很敏感的选手,就会直接猜跟 gcd ⁡ \gcd gcd 挂钩了。

    向我们这种凡人呢就只能听天由命了

    考虑这个性质之所以很难使用上,是因为这两个式子的系数只有一项,且是与等式对面的 f ( x , y ) f(x,y) f(x,y) 挂钩的。

    这种跟对面挂钩的我们会想到比例式,因为我们清楚如果分母和分子相同是可以约分的。

    当写成比例式 f ( a , a + b ) a + b = f ( a , b ) b \frac{f(a,a+b)}{a+b}=\frac{f(a,b)}{b} a+bf(a,a+b)=bf(a,b),我们才会稍微察觉到如果两边都再除以一个 a a a,整体形式就很同构了。

    f ( a , a + b ) a ∗ ( a + b ) = f ( a , b ) a ∗ b \frac{f(a,a+b)}{a*(a+b)}=\frac{f(a,b)}{a*b} a(a+b)f(a,a+b)=abf(a,b) 加减运算不影响 gcd ⁡ \gcd gcd 的值。

    递归辗转相除最后就会得到 f ( a , b ) a ∗ b = f ( gcd ⁡ ( a , b ) , gcd ⁡ ( a , b ) ) gcd ⁡ ( a , b ) 2 \frac{f(a,b)}{a*b}=\frac{f\big(\gcd(a,b),\gcd(a,b)\big)}{\gcd(a,b)^2} abf(a,b)=gcd(a,b)2f(gcd(a,b),gcd(a,b))

    所以我们可以得出:修改 f ( x , y ) f(x,y) f(x,y) 只会影响 gcd ⁡ ( x , y ) = gcd ⁡ ( a , b ) \gcd(x,y)=\gcd(a,b) gcd(x,y)=gcd(a,b) 的所有 f ( a , b ) f(a,b) f(a,b) 的值


继续考虑处理询问,这就要推式子了。
∑ i = 1 n ∑ j = 1 n f ( i , j ) = ∑ i = 1 n ∑ j = 1 n i × j gcd ⁡ ( i , j ) 2 f ( i , j ) = ∑ d = 1 n f ( d , d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ i × j ⋅ [ gcd ⁡ ( i , j ) = 1 ] \sum_{i=1}^n\sum_{j=1}^nf(i,j)=\sum_{i=1}^n\sum_{j=1}^n\frac{i\times j}{\gcd(i,j)^2}f(i,j)=\sum_{d=1}^nf(d,d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}i\times j·[\gcd(i,j)=1] i=1nj=1nf(i,j)=i=1nj=1ngcd(i,j)2i×jf(i,j)=d=1nf(d,d)i=1dnj=1dni×j[gcd(i,j)=1]

∑ k = 1 n [ gcd ⁡ ( k , n ) = 1 ] ⋅ k = ∑ k = 1 n k ∑ d ∣ k μ ( d ) = ∑ d ∣ n μ ( d ) ∑ d ∣ k k = ∑ d ∣ n μ ( d ) ∗ d ∑ i = 1 ⌊ n d ⌋ i = ∑ d ∣ n μ ( d ) ∗ d ∗ ( ⌊ n d ⌋ + 1 ) ∗ ⌊ n d ⌋ 2 = n ⋅ ( ∑ d ∣ n μ ( d ) + n ∑ d ∣ n μ ( d ) d ) 2 = n ⋅ ( φ ( n ) + [ n = 1 ] ) 2 \sum_{k=1}^n[\gcd(k,n)=1]·k\\ =\sum_{k=1}^nk\sum_{d\mid k}\mu(d)=\sum_{d\mid n}\mu(d)\sum_{d\mid k}k=\sum_{d\mid n}\mu(d)*d\sum_{i=1}^{\lfloor\frac nd\rfloor}i\\ =\sum_{d\mid n}\mu(d)*d*\frac{(\lfloor\frac nd\rfloor+1)*\lfloor\frac nd\rfloor}{2}=\frac{n·\Big(\sum_{d\mid n}\mu(d)+n\sum_{d\mid n}\frac{\mu(d)}{d}\Big)}{2}\\ =\frac{n·\Big(\varphi(n)+[n=1]\Big)}{2} k=1n[gcd(k,n)=1]k=k=1nkdkμ(d)=dnμ(d)dkk=dnμ(d)di=1dni=dnμ(d)d2(dn+1)dn=2n(dnμ(d)+ndndμ(d))=2n(φ(n)+[n=1])

根据两个基础数论结论: ∑ d ∣ n μ ( d ) = [ n = 1 ] , ∑ d ∣ n μ ( d ) d = φ ( n ) n \sum_{d\mid n}\mu(d)=[n=1],\sum_{d\mid n}\frac{\mu(d)}{d}=\frac{\varphi(n)}{n} dnμ(d)=[n=1],dndμ(d)=nφ(n) 得出最后一个等式。

∑ d = 1 n f ( d , d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ i × j ⋅ [ gcd ⁡ ( i , j ) = 1 ] ≠ ∑ d = 1 n f ( d , d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ i ⋅ i ⋅ ( φ ( i ) + [ i = 1 ] ) 2 \sum_{d=1}^nf(d,d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}i\times j·[\gcd(i,j)=1]\ne\sum_{d=1}^nf(d,d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}i·\frac{i·(\varphi(i)+[i=1])}{2} d=1nf(d,d)i=1dnj=1dni×j[gcd(i,j)=1]=d=1nf(d,d)i=1dnj=1dni2i(φ(i)+[i=1])

这个式子之所以不能直接用上面的结论,是因为这里的 j j j 可能大于 i i i,根据对称性, × 2 \times 2 ×2 即可。

但这样就会把所有 i = j i=j i=j 的情况重复算了一遍,但除了 i = j = 1 i=j=1 i=j=1 外其余都不满足最大公约数为 1 1 1 的限制。

i = j = 1 i=j=1 i=j=1 的贡献是 1 1 1,而 1 × φ ( 1 ) + [ i = 1 ] 2 × 2 = 2 \frac{1\times \varphi(1)+[i=1]}{2}\times 2=2 21×φ(1)+[i=1]×2=2,我们可以直接扔掉 [ i = 1 ] [i=1] [i=1],这样这种情况算出来的贡献就是对的。

且对于 i > 1 i>1 i>1 的情况去掉 [ i = 1 ] [i=1] [i=1] 的特判没有影响。
= ∑ d = 1 n f ( d , d ) ∑ i = 1 ⌊ n d ⌋ i ⋅ i ∗ φ ( i ) 2 × 2 = ∑ d = 1 n f ( d , d ) ∑ i = 1 ⌊ n d ⌋ i 2 φ ( i ) =\sum_{d=1}^nf(d,d)\sum_{i=1}^{\lfloor\frac nd\rfloor}i·\frac{i*\varphi(i)}{2}\times2=\sum_{d=1}^nf(d,d)\sum_{i=1}^{\lfloor\frac nd\rfloor}i^2\varphi(i) =d=1nf(d,d)i=1dni2iφ(i)×2=d=1nf(d,d)i=1dni2φ(i)
S ( n ) = ∑ i = 1 n i 2 φ ( i ) S(n)=\sum_{i=1}^ni^2\varphi(i) S(n)=i=1ni2φ(i),则答案即为 ∑ d = 1 n f ( d , d ) S ( ⌊ n d ⌋ ) \sum_{d=1}^nf(d,d)S(\lfloor\frac nd\rfloor) d=1nf(d,d)S(dn)

然后似乎就可以整除分块了,然而整除分块还要用到 f f f 的前缀和。

很遗憾,这个 f f f 还要是支持修改的,所以需要一个数据结构。

树状数组查询 O ( m n log ⁡ n ) O(m\sqrt n\log n) O(mn logn) 不太行,但修改却只有一个 log ⁡ \log log 很快。当然这也能过。

我们需要平衡一下查询和修改的时间复杂度,那就是分块啦!

直接把 f f f 变成 f f f 的前缀和,单点修改变成区间修改 gcd ⁡ ( a , b ) ∼ n \gcd(a,b)\sim n gcd(a,b)n,之后查询前缀和就变成了单点询问了。

具体而言 f ( a , b ) ← x f(a,b)\leftarrow x f(a,b)x,即为 f ( gcd ⁡ ( a , b ) , gcd ⁡ ( a , b ) ) ← x ⋅ gcd ⁡ ( a , b ) 2 a b f(\gcd(a,b),\gcd(a,b))\leftarrow \frac{x·\gcd(a,b)^2}{ab} f(gcd(a,b),gcd(a,b))abxgcd(a,b)2(这个是由上面最开始递归辗转相除的式子变形得来的)

code

#include <bits/stdc++.h>
using namespace std;
#define int long long 
#define mod 1000000007
#define maxn 4000005
#define maxB 2005
int m, n, cnt;
int a[maxn], block[maxn], L[maxB], R[maxB], f[maxn], g[maxB], phi[maxn], s[maxn], prime[maxn], vis[maxn];

int gcd( int x, int y ) {
	if( ! y ) return x;
	else return gcd( y, x % y );
}

void init() {
	int B = sqrt( n );
	for( int i = 1;i <= n;i ++ ) {
		a[i] = i * i % mod;
		f[i] = ( f[i - 1] + a[i] ) % mod;
		block[i] = ( i - 1 ) / B + 1;
	}
	for( int i = n;i >= 1;i -- ) L[block[i]] = i; 
	for( int i = 1;i <= n;i ++ ) R[block[i]] = i;
}
void modify( int l, int r, int x ) {
	int k = x - a[l]; a[l] = x;
	if( block[l] == block[r] )
		for( int i = l;i <= r;i ++ ) f[i] = ( f[i] + k ) % mod;
	else {
		for( int i = l;i <= R[block[l]];i ++ ) f[i] = ( f[i] + k ) % mod;
		for( int i = L[block[r]];i <= r;i ++ ) f[i] = ( f[i] + k ) % mod;
		for( int i = block[l] + 1;i < block[r];i ++ ) g[i] = ( g[i] + k ) % mod;
	}
}
int query( int x ) { return ( f[x] + g[block[x]] ) % mod; }

void sieve() {
	phi[1] = 1;
	for( int i = 2;i <= n;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, phi[i] = i - 1;
		for( int j = 1;j <= cnt and i * prime[j] <= n;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				phi[i * prime[j]] = phi[i] * prime[j] % mod;
				break;
			}
			else
				phi[i * prime[j]] = phi[i] * phi[prime[j]] % mod;
		}
	}
	for( int i = 1;i <= n;i ++ ) s[i] = ( s[i - 1] + i * i % mod * phi[i] ) % mod;
}
int solve( int n ) {
	int ans = 0;
	for( int l = 1, r;l <= n;l = r + 1 ) {
		r = n / ( n / l );
		ans = ( ans + ( query( r ) - query( l - 1 ) ) * s[n / l] ) % mod;
	}
	return ans;
}

signed main() {
	scanf( "%lld %lld", &m, &n );
	init();
	sieve();
	for( int i = 1, a, b, x, k;i <= m;i ++ ) {
		scanf( "%lld %lld %lld %lld", &a, &b, &x, &k );
		int d = gcd( a, b );
		x = x / ( a / d ) / ( b / d ) % mod;
		modify( d, n, x );
		printf( "%lld\n", ( solve( k ) + mod ) % mod );
	}
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值