problem
solution
本题即求无向图最大团问题。这是个 NP hard \text{NP hard} NP hard 问题,所以必须从图的特殊性质出发,否则只能暴搜。
异或运算等价于二进制下不进位的加法运算。
observation1 : \text{observation1}: observation1: A A A 国人之间做朋友的条件等价于两人的 a i a_i ai 奇偶性不同。
observation2 : \text{observation2}: observation2: 基于上一条,我们可以得出最大朋友圈中 A A A 国人数只可能包含 0 / 1 / 2 0/1/2 0/1/2 人。
observation3 : \text{observation3}: observation3: B B B 国人的限制有两种,且是各自独立的。
observation4 : \text{observation4}: observation4: 将 B B B 国人按照 b i b_i bi 的奇偶性分类,则两类之间的人一定都是两两可以做朋友的。
observation5 : \text{observation5}: observation5: 而第二种限制的朋友关系则是一个在奇数类一个在偶数类。
B B B 国分类后的情况形似二分图。
只不过二分图是,左右内部两两无边,然后有连接左右的边。
这里是左右内部两两有边,然后有连接左右的边。
observation6 : \text{observation6}: observation6: 原图的补图是个二分图,且原图的最大团等于补图的最大独立集。
最大团是两两有边,最大独立集是两两无边,感觉上原图的最大团就应该等于补图的最大独立集。
严谨证明可自行百度。
而二分图的最大独立集又等于二分图的最小点覆盖。
而二分图的最小点覆盖又等于总点数减去最大匹配数。
所以问题就变成了求补图(二分图)的最大匹配数,网络流即可。
至于 A A A 国的人,直接枚举是选 0 / 1 / 2 0/1/2 0/1/2 个人,然后每次重新建图跑网络流即可。
因为有 A A A 国人的存在,所以只用考虑与枚举的 A A A 国人是朋友的 B B B 国人跑网络流即可。
具体可以看代码实现。
code
#include <bits/stdc++.h>
using namespace std;
#define maxn 3005
int T, A, B, M, s, t, cnt, ans, tot;
queue < int > q;
vector < int > G[maxn];
pair < int, int > e[maxn * maxn];
struct node { int to, nxt, flow; }E[maxn * maxn];
int head[maxn], cur[maxn], dep[maxn], vis[maxn], a[maxn], b[maxn];
int g[2][maxn];
void addedge( int u, int v ) {
E[++ cnt] = { v, head[u], 1 }, head[u] = cnt;
E[++ cnt] = { u, head[v], 0 }, head[v] = cnt;
}
bool bfs() {
memset( dep, 0, sizeof( dep ) );
memcpy( cur, head, sizeof( head ) );
dep[s] = 1; q.push( s );
while( ! q.empty() ) {
int u = q.front(); q.pop();
for( int i = head[u];~ i;i = E[i].nxt ) {
int v = E[i].to;
if( ! dep[v] and E[i].flow )
dep[v] = dep[u] + 1, q.push( v );
}
}
return dep[t];
}
int dfs( int u, int cap ) {
if( u == t or ! cap ) return cap;
int flow = 0;
for( int i = cur[u];~ i;i = E[i].nxt ) {
int v = E[i].to; cur[u] = i;
if( dep[v] == dep[u] + 1 ) {
int w = dfs( v, min( cap, E[i].flow ) );
if( ! w ) continue;
E[i ^ 1].flow += w;
E[i].flow -= w;
flow += w;
cap -= w;
if( ! cap ) break;
}
}
return flow;
}
void dinic( int n ) {
while( bfs() ) {
n -= dfs( s, 1e9 );//总点数-最大匹配 才是要求的补图的最小点覆盖 即原图的最大团
if( n <= ans ) return;
}
ans = n;
}
void build() {
cnt = -1, memset( head, -1, sizeof( head ) );
for( int i = 1;i <= tot;i ++ )
if( vis[e[i].first] and vis[e[i].second] )
addedge( e[i].first, e[i].second );
for( int i = 1;i <= g[0][0];i ++ ) if( vis[g[0][i]] ) addedge( s, g[0][i] );
for( int i = 1;i <= g[1][0];i ++ ) if( vis[g[1][i]] ) addedge( g[1][i], t );
}
int main() {
scanf( "%d", &T );
while( T -- ) {
scanf( "%d %d %d", &A, &B, &M );
for( int i = 1;i <= A;i ++ ) G[i].clear();
s = 0, t = B + 1, ans = tot = g[0][0] = g[1][0] = 0;
for( int i = 1;i <= A;i ++ ) scanf( "%d", &a[i] );
for( int i = 1;i <= B;i ++ ) scanf( "%d", &b[i] );
for( int i = 1, x, y;i <= M;i ++ ) {
scanf( "%d %d", &x, &y );
G[x].push_back( y );
}
for( int i = 1;i <= B;i ++ ) g[b[i]&1][++g[b[i]&1][0]] = i;
for( int i = 1;i <= g[0][0];i ++ )
for( int j = 1;j <= g[1][0];j ++ )
if( __builtin_popcount( b[g[0][i]] | b[g[1][j]] ) & 1 )
continue;
else
e[++ tot] = make_pair( g[0][i], g[1][j] );
for( int i = 1;i <= B;i ++ ) vis[i] = 1;
build(), dinic( B ); //一个A类人都不选
for( int i = 1;i <= A;i ++ ) { //枚举选的一个A类人
memset( vis, 0, sizeof( vis ) );
for( int x : G[i] ) vis[x] ++;
int n = 1;//n当前情况的总点数
for( int j = 1;j <= B;j ++ ) n += vis[j];
if( n <= ans ) continue;
else build(), dinic( n );
}
for( int i = 1;i <= A;i ++ )
for( int j = i + 1;j <= A;j ++ )
if( ( a[i] ^ a[j] ) & 1 ) {//枚举选择两个A类人
memset( vis, 0, sizeof( vis ) );
for( int x : G[i] ) vis[x] ++;
for( int x : G[j] ) vis[x] ++;
int n = 2;
for( int k = 1;k <= B;k ++ )
if( vis[k] < 2 ) vis[k] = 0;
else vis[k] = 1, n ++;
if( n <= ans ) continue;
else build(), dinic( n );
}
printf( "%d\n", ans );
}
return 0;
}