[AtCoder Educational DP Contest] W - Intervals(线段树优化dp)

problem

给定 m m m 条规则形如 ( l i , r i , a i ) (l_i,r_i,a_i) (li,ri,ai),对于一个 01 串,其分数的定义是:对于第 i i i 条规则,若该串在 [ l i , r i ] [l_i,r_i] [li,ri] 中至少有一个 1,则该串的分数增加 a i a_i ai

你需要求出长度为 n n n 的 01 串中的最大分数。

1 ≤ n , m ≤ 2 × 1 0 5 , ∣ a i ∣ ≤ 1 0 9 1\le n,m\le 2\times 10^5,|a_i|\le 10^9 1n,m2×105,ai109

solution

f ( i , j ) : f(i,j): f(i,j): i i i 为止最后一个 1 1 1 出现位置为 j j j 的最大分数。

像这种 [ l , r ] [l,r] [l,r] 的限制,遇到线段树/树状数组,我们一般是化段为点,挂在 l / r / l − 1 / r + 1 l/r/l-1/r+1 l/r/l1/r+1 点上,具体要看题目了。

主要就是为了避免重复计算一个限制的贡献。

这里我们不妨在 r r r 的时候再加上 [ l , r ] [l,r] [l,r] 的贡献。

依次做以下两个转移:
{ f ( i , i ) = max ⁡ j < i { f ( i − 1 , j ) } f ( i , j ) = f ( i , j ) + ∑ r k = i , l k ≤ j a k \begin{cases} f(i,i)=\max_{j<i}\Big\{f(i-1,j)\Big\}\\ f(i,j)=f(i,j)+\sum_{r_k=i,l_k\le j}a_k \end{cases} {f(i,i)=maxj<i{f(i1,j)}f(i,j)=f(i,j)+rk=i,lkjak
这种形式多半也能往线段树上靠。

具体而言:把 f ( ∗ , j ) f(*,j) f(,j) 放到线段树上。 j j j 做下标,表示当前最后一个 1 1 1 填在 j j j 位置的方案数。

  • 对于第一种转移,直接查询线段树最大值,然后更新 i i i 位置。
  • 对于第二种转移,将所有 r = i r=i r=i [ l , r ] [l,r] [l,r] 规则进行 [ l , i ] [l,i] [l,i] 的区间加操作。

答案即为最后的全局最大值。

code

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define maxn 200005
int n, m;
vector < pair < int, int > > g[maxn];
int Max[maxn << 2], tag[maxn << 2];
#define lson now << 1
#define rson now << 1 | 1
#define mid  (l + r >> 1)
void pushdown( int now ) {
	tag[lson] += tag[now];
	tag[rson] += tag[now];
	Max[lson] += tag[now];
	Max[rson] += tag[now];
	tag[now] = 0;
}
void modify( int now, int l, int r, int L, int R, int v ) {
	if( R < l or r < L ) return;
	if( L <= l and r <= R ) { tag[now] += v; Max[now] += v; return; }
	pushdown( now );
	modify( lson, l, mid, L, R, v );
	modify( rson, mid + 1, r, L, R, v );
	Max[now] = max( Max[lson], Max[rson] );
}
void modify( int now, int l, int r, int p, int v ) {
	if( l == r ) { Max[now] = max( Max[now], v ); return; }
	pushdown( now );
	if( p <= mid ) modify( lson, l, mid, p, v );
	else modify( rson, mid + 1, r, p, v );
	Max[now] = max( Max[lson], Max[rson] );
}
signed main() {
	scanf( "%lld %lld", &n, &m );
	for( int i = 1, l, r, a;i <= m;i ++ ) {
		scanf( "%lld %lld %lld", &l, &r, &a );
		g[r].push_back( make_pair( l, a ) );
	}
	for( int i = 1;i <= n;i ++ ) {
		modify( 1, 0, n, i, Max[1] );
		for( auto it : g[i] ) modify( 1, 0, n, it.first, i, it.second );
	}
	printf( "%lld\n", Max[1] );
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值