- 对于非叶子节点,它只能调换它的儿子的顺序,却不能调换整颗子树的顺序
- 合法的PQ树都能表示出1,2,3,…,n 这个排列
- 由以上两点可以得出:PQ树的每棵子树对应的一定都是一段连续的数字区间
- 考虑区间DP,设 f ( l , r ) f(l,r) f(l,r)表示数字l~r构成一棵PQ树的方案数
- 数字l~r 能够构成一棵子树 当且仅当 数字l~r 在题目给出的所有排列中都在一段连续区间中,我们定义这样的 [l,r] 是“好的”
- 若[l,r]不是"好的", f ( l , r ) = 0 f(l,r)=0 f(l,r)=0
- 若[l,r]是"好的",要算 f ( l , r ) f(l,r) f(l,r),分 树根为P点 和 树根为Q点 两种情况讨论
- 若树根为P点: f ( l , r ) + = ∑ i = l r − 1 f ( l , i ) g ( i + 1 , r ) f(l,r)+=\sum_{i=l}^{r-1}f(l,i)g(i+1,r) f(l,r)+=∑i=lr−1f(l,i)g(i+1,r)(其中 g ( i + 1 , r ) g(i+1,r) g(i+1,r)表示数字i+1~r构成一片PQ树森林(可以只有一颗树) 的方案数)
- g ( l , r ) = f ( l , r ) + ∑ i = l r − 1 f ( l , i ) g ( i + 1 , r ) g(l,r)=f(l,r)+\sum_{i=l}^{r-1}f(l,i)g(i+1,r) g(l,r)=f(l,r)+∑
[XSY] PQ树(区间DP)
最新推荐文章于 2022-02-11 15:34:50 发布
PQ树是一种特殊的数据结构,每个非叶子节点只能调整其儿子的顺序,且能表示1到n的排列。文章介绍了如何利用区间动态规划(DP)解决与PQ树相关的问题,包括计算特定区间构成PQ树的方案数。讨论了树根为P点和Q点时的转移方程,并提出了在实现过程中的技巧,如在计算q值时就加入位置单调性的判断条件。
摘要由CSDN通过智能技术生成