[XSY] PQ树(区间DP)

PQ树是一种特殊的数据结构,每个非叶子节点只能调整其儿子的顺序,且能表示1到n的排列。文章介绍了如何利用区间动态规划(DP)解决与PQ树相关的问题,包括计算特定区间构成PQ树的方案数。讨论了树根为P点和Q点时的转移方程,并提出了在实现过程中的技巧,如在计算q值时就加入位置单调性的判断条件。
摘要由CSDN通过智能技术生成

PQ树

  • 对于非叶子节点,它只能调换它的儿子的顺序,却不能调换整颗子树的顺序
  • 合法的PQ树都能表示出1,2,3,…,n 这个排列
  • 由以上两点可以得出:PQ树的每棵子树对应的一定都是一段连续数字区间
  • 考虑区间DP,设 f ( l , r ) f(l,r) f(l,r)表示数字l~r构成一棵PQ树的方案数
  • 数字l~r 能够构成一棵子树 当且仅当 数字l~r 在题目给出的所有排列中都在一段连续区间中,我们定义这样的 [l,r] 是“好的”
  • 若[l,r]不是"好的", f ( l , r ) = 0 f(l,r)=0 f(l,r)=0
  • 若[l,r]是"好的",要算 f ( l , r ) f(l,r) f(l,r),分 树根为P点 和 树根为Q点 两种情况讨论
  • 若树根为P点: f ( l , r ) + = ∑ i = l r − 1 f ( l , i ) g ( i + 1 , r ) f(l,r)+=\sum_{i=l}^{r-1}f(l,i)g(i+1,r) f(l,r)+=i=lr1f(l,i)g(i+1,r)(其中 g ( i + 1 , r ) g(i+1,r) g(i+1,r)表示数字i+1~r构成一片PQ树森林(可以只有一颗树) 的方案数)
  • g ( l , r ) = f ( l , r ) + ∑ i = l r − 1 f ( l , i ) g ( i + 1 , r ) g(l,r)=f(l,r)+\sum_{i=l}^{r-1}f(l,i)g(i+1,r) g(l,r)=f(l,r)+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值