P3376 【模板】网络最大流 (EK模板+dinic模板)

题目描述

如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。

1、EK模板

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 2e5 + 10;
int n, m, s, t, h[N], cnt, inq[N];
struct node {
    int v, w, nt;
} no[N];
struct Pre {
    int v, e;
} pre[N];
void add(int u, int v, int w) {
    no[cnt] = node{v, w, h[u]};
    h[u] = cnt++;
}
bool bfs() {
    queue<int> q;
    memset(pre, 0, sizeof pre);
    memset(inq, 0, sizeof inq);
    inq[s] = 1, q.push(s);
    while(!q.empty()) {
        int u = q.front();
        q.pop();
        for(int i = h[u]; ~i; i = no[i].nt) {
            int v = no[i].v;
            if(!inq[v] && no[i].w) {
                pre[v].v = u;
                pre[v].e = i;
                if(v == t)
                    return 1;
                inq[v] = 1;
                q.push(v);
            }
        }
    }
    return 0;
}
int EK() {
    int ans = 0;
    while(bfs()) {
        int mi = 1e9;
        for(int i = t; i != s; i = pre[i].v)
            mi = min(mi, no[pre[i].e].w);
        for(int i = t; i != s; i = pre[i].v) {
            no[pre[i].e].w -= mi;
            no[pre[i].e + 1].w += mi;
        }
        ans += mi;
    }
    return ans;
}
int main() {
    memset(h, -1, sizeof h);
    scanf("%d%d%d%d", &n, &m, &s, &t);
    for(int u, v, w, i = 1; i <= m; i++) {
        scanf("%d%d%d", &u, &v, &w);
        add(u, v, w), add(v, u, 0);
    }
    printf("%d\n", EK());
    return 0;
}

2、dinic模板(当前弧优化)

#include<bits/stdc++.h>
#define ll long long
#define INF 0x3f3f3f3f
using namespace std;
const int N = 2e5 + 10;
int n, m, s, t, h[N], cnt, dep[N], cur[N];
struct node {
    int v, w, nt;
} no[N];
void add(int u, int v, int w) {
    no[cnt] = node{v, w, h[u]};
    h[u] = cnt++;
}
int bfs() {
    queue<int> q;
    memset(dep, 0, sizeof dep);
    dep[s] = 1;
    q.push(s);
    while(!q.empty()) {
        int u = q.front();
        q.pop();
        for(int i = h[u]; ~i; i = no[i].nt) {
            int v = no[i].v;
            if(!dep[v] && no[i].w>0) {
                dep[v] = dep[u] + 1;
                q.push(v);
            }
        }
    }
    return dep[t] > 0;
}
int dfs(int u, int flow) {
    if(u == t)
        return flow;
    for(int &i = cur[u]; ~i; i = no[i].nt) {
        int v = no[i].v;
        if(dep[v] == dep[u] + 1 && no[i].w) {
            int res = dfs(v, min(flow, no[i].w));
            if(res > 0) {
                no[i].w -= res;
                no[i ^ 1].w += res;
                return res;
            }
        }
    }
    return 0;
}
int dinic() {
    int res = 0;
    while(bfs()) {
        for(int i = 0; i <= t; i++)
            cur[i] = h[i];
        while(int d = dfs(s, INF))
            res += d;
    }
    return res;
}
int main() {
    memset(h, -1, sizeof h);
    scanf("%d%d%d%d", &n, &m, &s, &t);
    for(int u, v, w, i = 1; i <= m; i++) {
        scanf("%d%d%d", &u, &v, &w);
        add(u, v, w), add(v, u, 0);
    }
    printf("%d\n", dinic());
    return 0;
}

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值