luogu P3376 【模板】网络最大流

题面传送门
这道题可以用 E K EK EK算法来解。啥?你问我 E K EK EK是啥?
我们可以尝试着用爆搜来打网络流,可是无疑会 T T T
爆搜的慢体现在哪里呢?爆搜走了很多重复的路。
这时 E K EK EK算法的精髓就可以出来了。
E K EK EK算法对于每一条边 s s s建一条反向边 s 1 s1 s1,并满足 s + s 1 = w s+s1=w s+s1=w。这条反向边有着断边和连边的作用。
我们可以一直跑 b f s bfs bfs找源点和汇点之间的通路,然后计算最大流。直到不能跑了停止时就是最大流。
时间复杂度 O ( E V 2 ) O(EV^2) O(EV2)
代码实现:

#include<cstdio>
#include<cstring>
#include<queue>
#define min(a,b) ((a)<(b)?(a):(b))
using namespace std;
int n,m,k,x,y,z,vis[10039],h[10039],s,t,head,a[100039],b[100039],now,cur,minn,ans;
struct yyy{
	int to,w,z;
}f[200039],tmp;
inline void add(int x,int y,int z){
    f[head]=(yyy){y,z,h[x]};
    h[x]=head++;
}
queue<int> q;
inline int bfs(){
	memset(vis,0,sizeof(vis));
	memset(a,-1,sizeof(a));
	memset(b,-1,sizeof(b));
	while(!q.empty())q.pop();
	q.push(s);
	vis[s]=1;
	//for(int i=1;i<=head;i++)printf("%d\n",f[i].w);
	while(!q.empty()){
		now=q.front();
		q.pop();
		cur=h[now];
		while(cur!=-1){
			tmp=f[cur];
			if(vis[tmp.to]||!tmp.w) {cur=tmp.z;continue;}
			a[tmp.to]=now;
			b[tmp.to]=cur;
			q.push(tmp.to);
			vis[tmp.to]=1;
			cur=tmp.z;
			if(tmp.to==t) return 1;
		}
	}
	return 0;
}
inline int ek(){
	while(bfs()){
		minn=2e9;
		for(int i=t;i!=s;i=a[i]) minn=min(f[b[i]].w,minn);
		ans+=minn;
		for(int i=t;i!=s;i=a[i]) f[b[i]].w-=minn,f[b[i]^1].w+=minn;
	}
	return ans; 
}
int main(){
	memset(h,-1,sizeof(h));
	register int i;
	scanf("%d%d%d%d",&n,&m,&s,&t);
	for(i=1;i<=m;i++) scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,0);
	printf("%d\n",ek());
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值