题面传送门
这道题可以用
E
K
EK
EK算法来解。啥?你问我
E
K
EK
EK是啥?
我们可以尝试着用爆搜来打网络流,可是无疑会
T
T
T
爆搜的慢体现在哪里呢?爆搜走了很多重复的路。
这时
E
K
EK
EK算法的精髓就可以出来了。
E
K
EK
EK算法对于每一条边
s
s
s建一条反向边
s
1
s1
s1,并满足
s
+
s
1
=
w
s+s1=w
s+s1=w。这条反向边有着断边和连边的作用。
我们可以一直跑
b
f
s
bfs
bfs找源点和汇点之间的通路,然后计算最大流。直到不能跑了停止时就是最大流。
时间复杂度
O
(
E
V
2
)
O(EV^2)
O(EV2)
代码实现:
#include<cstdio>
#include<cstring>
#include<queue>
#define min(a,b) ((a)<(b)?(a):(b))
using namespace std;
int n,m,k,x,y,z,vis[10039],h[10039],s,t,head,a[100039],b[100039],now,cur,minn,ans;
struct yyy{
int to,w,z;
}f[200039],tmp;
inline void add(int x,int y,int z){
f[head]=(yyy){y,z,h[x]};
h[x]=head++;
}
queue<int> q;
inline int bfs(){
memset(vis,0,sizeof(vis));
memset(a,-1,sizeof(a));
memset(b,-1,sizeof(b));
while(!q.empty())q.pop();
q.push(s);
vis[s]=1;
//for(int i=1;i<=head;i++)printf("%d\n",f[i].w);
while(!q.empty()){
now=q.front();
q.pop();
cur=h[now];
while(cur!=-1){
tmp=f[cur];
if(vis[tmp.to]||!tmp.w) {cur=tmp.z;continue;}
a[tmp.to]=now;
b[tmp.to]=cur;
q.push(tmp.to);
vis[tmp.to]=1;
cur=tmp.z;
if(tmp.to==t) return 1;
}
}
return 0;
}
inline int ek(){
while(bfs()){
minn=2e9;
for(int i=t;i!=s;i=a[i]) minn=min(f[b[i]].w,minn);
ans+=minn;
for(int i=t;i!=s;i=a[i]) f[b[i]].w-=minn,f[b[i]^1].w+=minn;
}
return ans;
}
int main(){
memset(h,-1,sizeof(h));
register int i;
scanf("%d%d%d%d",&n,&m,&s,&t);
for(i=1;i<=m;i++) scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,0);
printf("%d\n",ek());
}