思路:设循环次数为x,则可以发现x=[(b-a+2^k)%2^k]/c,可以看出,这个方程类似于ax = b(mod n),等价于ax-ny=b 是模线性方程,所以可以套扩展gcd的板子解出题来。
有一个结论:假设方程ax = b(mod n)有解, x0是方程的任意一个解, 则方程对模n恰有d个不同的解, 分别为: xi = x0 + i * (n / d), 其中 i = 1,2,3......d - 1
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll a, b, c, k, x, y, z;
ll exgcd(ll a, ll b) {
if(!b) {
x = 1, y = 0;
return a;
}
ll d = exgcd(b, a % b);
ll t = x;
x = y;
y = t - (a / b) * y;
return d;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
while(cin >> x >> y >> z >> k && (x + y + z + k)) {
a = z, b = (1ll << k), c = y - x;
ll gcd = exgcd(a, b);
if(c % gcd != 0)
cout << "FOREVER" << endl;
else {
x = (c / gcd) * x;
x %= b / gcd;
while(x < 0)
x += (b / gcd);
cout << x << endl;
}
}
return 0;
}