poj2115C Looooops(exgcd)

思路:设循环次数为x,则可以发现x=[(b-a+2^k)%2^k]/c,可以看出,这个方程类似于ax = b(mod n),等价于ax-ny=b 是模线性方程,所以可以套扩展gcd的板子解出题来。

有一个结论:假设方程ax = b(mod n)有解, x0是方程的任意一个解, 则方程对模n恰有d个不同的解, 分别为: xi = x0 + i * (n / d), 其中 i = 1,2,3......d - 1

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll a, b, c, k, x, y, z;
ll exgcd(ll a, ll b) {
    if(!b) {
        x = 1, y = 0;
        return a;
    }
    ll d = exgcd(b, a % b);
    ll t = x;
    x = y;
    y = t - (a / b) * y;
    return d;
}
int main() {
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    while(cin >> x >> y >> z >> k && (x + y + z + k)) {
        a = z, b = (1ll << k), c = y - x;
        ll gcd = exgcd(a, b);
        if(c % gcd != 0)
            cout << "FOREVER" << endl;
        else {
            x = (c / gcd) * x;
            x %= b / gcd;
            while(x < 0)
                x += (b / gcd);
            cout << x << endl;
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值