导语
当前,AI大模型技术正以前所未有的方式,改变着各行各业的服务方式和用户体验。这其中,银行业作为数据密集型行业,以其天然的金融场景需求首当其冲地成为大模型应用落地的重要领域。同时,我们也观察到一个令人振奋的趋势:央国企招采中,大模型项目开始变多,一出手就是几百万上千万,央国企同样也开始加速布局大模型。银行+央国企成为推动大模型落地的强劲动力。
截至2023年末我国大模型数量超过200个,覆盖金融、工业、媒体、政务、医学等各个行业,其中又以通用、金融垂直领域大模型落地速度最快。从信创与AI技术融合来看,金融行业信创节奏领先,金融业尤其银行业大模型应用正逐步展开,2024人工智能大会中很多创新型公司发布AI Agent相关应用,助力金融各细分领域数智化升级。金融行业首个全栈自主可控的千亿级AI大模型技术体系已经由工商银行建成,并在多个金融业务领域创新应用,可预见未来金融行业信创与AI融合将会率先形成规模。
01 从国有大行到中小银行看AI大模型不同应用现状
当前,AI大模型技术正以前所未有的方式,改变着各行各业的服务方式和用户体验。这其中,银行业作为数据密集型行业,以其天然的金融场景需求首当其冲地成为大模型应用落地的重要领域。
以国有大行为例,在近期公布的半年报中,各家银行均提及了大模型的研发进展,以及在场景落地应用上的阶段性成果。
打造50+应用场景,赋能79个业务场景
工行指出,其深化千亿级大模型技术建设与赋能,打造金融市场、信贷风控、网络金融等50余个应用场景。
同时,工行促进大模型技术与业务深度融合,实现多领域落地创新应用;赋能金融市场领域投资、融资、交易等业务全流程,提高业务处理效率;打造营销智能助手,开发产品智能问答、营销活动方案设计等功能,精准发力支持客户营销。
在投融资运营管理平台建设方面,工行也在探索人工智能、大模型等技术的业务应用场景,投产“制度通”信贷制度服务平台、“文书通”报告自动生成等系统功能。
工行还提到,加快大模型技术在数字客服领域应用推广。另外,工行依托企业网上银行和企业手机银行核心基础平台建设,聚焦中小企业数字化转型痛点、难点,打造企业经营智慧管家,其中应用了大模型、大数据等技术。
建行指出,其持续推进金融大模型建设及应用,全面赋能公司金融、个人金融、资金资管、风险管理、科技渠运、综合管理六大板块79个行内业务场景;提升文生图输出质量,支撑客户营销提质增效;优化检索增强生成应用模式,支撑授信审批财务分析,将客户财务分析报告工作用时由数小时缩短至分钟级别。
农行半年报显示,其在人工智能技术应用方面,加快以AI技术为驱动的智慧银行建设,密切跟踪大模型技术趋势,持续完善AI软硬件支撑体系,稳妥推动AI+应用场景落地。
邮储银行介绍,借助人工智能、大模型、云计算等前沿技术,构建数据智能分析体系,为同业客户提供深度行业分析、精准机构画像和前瞻数据服务。
邮储大脑逐步向生成创作提升,**为员工打造多种智能办公助手。**远程银行客户投诉分析场景可有效辅助坐席进行投诉内容的监管报送分类,准确率达93%。文档内容审核可有效帮助业务需求管理人员快速理解与审核需求内容,业务标签提炼准确率达84%,功能点抽取准确率达96%。
交通银行在2024年半年报中表示,**积极探索AIGC前沿技术,制定生成式人工智能建设规划,组建GPT大模型专项研究团队。**2024年世界人工智能大会上交通银行展台上,展示了多个基于AI的应用,包括了AI制作咖啡、数字人等成果。3D智能交互数字员工姣姣和小姣,是基于交行整体AI技术驱动,整合了多模态交互、3D数字人建模、语音识别、自然语义理解等前沿的人工智能科技,可以与客户进行深入业务沟通。
落地应用不断开花
除了国有大行,其他股份制银行及各中小银行也在大模型场景应用上不断开花。
例如,兴业银行利用大模型与自然语言处理技术,高效精准分析洗钱可疑客户行为、可疑主体信息和可疑交易信息等特征,并快速生成辅助分析报告。
浦发银行2024半年报显示,其统筹862个AI模型,完善研发体系,探索大模型新技术应用。
平安银行表示,其自主研发大模型开放平台,加强算力平台、大模型底座、大模型开发运维一体化(Ops)、智能体(Agent)、应用开发平台等基础能力建设,为营销支持、内部运营、风险管控、办公辅助等领域的研发应用提供通用能力模型和一站式场景定制服务。
浙商银行则推进AIGC大模型等金融科技与场景金融结合方向的课题研究,规划实施算力管理MaaS平台、数字人IP建设项目、AI辅助分析平台、财富智能投研助手,加速人工智能落地应用。
民生银行则将大模型**赋能研发。**其研发团队从金融研发自身安全、效率、可控等需求出发,打造了覆盖开发、集成、测试、投产的端到端运行风险监测能力。引入代码大模型产品后,系统的生成采纳率为20-30%之间,采纳代码与提交量占比大致在30%左右,接近业界主流实践水平,代码注释率从18%提升至约30%。
江苏银行基于大模型“多模态”理念,准确识别用户意图,自动运用音频分析、外部图像处理等功能,实现扫描件、语音、电子表格和文本等多种类型素材的自动化提取,打通多类信息载体间的壁垒。该行推出“智能文档助手”,自动归纳企业经营状况,结合实时舆情信息,实现授信调查报告的智能生成,工作效率提升42%,预计每年节省客户经理1.5万工时。
桂林银行启动了“大语言模型中台”项目,秉承中台化的设计和服务理念,集中统一管理大模型资源,为全行各业务系统提供智能客服、内容创作、代码编写、产品设计、文档编写、智能办公、数据分析和逻辑推理等方面的AI能力。
从上述各大银行的大模型应用场景来看,目前主要还是对内应用。这些应用在银行业提升内部运营效率、优化客户服务、增强风险管理等方面发挥了重要作用。
未来,随着技术的不断成熟和应用场景的拓展,大模型技术将在银行业务中扮演更加关键的角色,也有望逐步扩展到对外的客户服务和产品创新中,从而推动整个银行业的数字化转型和智能化升级。
02 30家央国企已发布大模型盘点
确实
有,真有,央国企
2024年,我们观察到一个令人振奋的趋势:央国企招采中,大模型项目开始变多,一出手就是几百万上千万,央国企开始加速布局大模型,他们成为推动大模型落地的强劲动力。我们来看一下:
30家央国企已成功发布的大模型
中国海油10月14日发布
✓5个专业场景模型:针对海上油田稳产增产、安全钻井、海工制造、设备维护、LNG(液化天然气)贸易、油气销售等场景,构建数据驱动、业务协同的新模式,进一步提升产业数智化水平
✓6个通用场景模型:针对招标采办、员工健康、辅助办公等需求推出智能应用,助力业务管理和办公效率提升
2023年9月发布
✓电力行业首个跨NLP/CV模态大模型产品,实现了算力、算法、应用全过程的自主可控
✓“大瓦特”参数量达百亿,具备多种能力,如意图识别、多轮对话、总结提炼、自动生成巡检报告、可视化数据服务、知识增强以及跨模态交互等
✓垂直电力场景:智能客服、输变配、电力调度和安监
国网湖南电科院发布
自主研发的10亿节点配网视觉大模型
✓配网环境复杂多变,包括各种气象条件、设备类型、运行状态等,对现场作业有极高的适应性要求,目前可以支撑十多种细分专业、几十个配网场景的使用
✓已经在无人机巡检、通道可视化等取得显著成效,顺利完成30万公里巡检,平均识别效率比主流视觉模型提升了10%
2023年9月,中核八所
发布自主研发的“龙吟”大模型2.0
2024年3月,中核八所又发布了
“龙吟·万界”是集大模型智能体开发、应用、管理于一体的一站式企业服务平台,能够结合核工业各种业务场景快速设计开发并落地Nu Copilot系列数字助理。
2024年7月
国家能源集团数智科技公司
发布自研的能源通道大模型
✓以该模型认知能力为核心引擎,可构建以煤炭、电力、铁路、港口、航运、化工、销售生产运营计划为驱动的模型体系,形成智能查询与问答、智能平衡与调控、智能预警与通知、智慧分析与决策四大核心能力
✓全面支持集团实现“全景、共振、变易”的一体化运营调度,显著提高集团煤电化运一体化运营决策效率和运营能力
中国中煤能源集团天津设计公司
发布自研的中煤“地知”大模型(一期)
✓地知私有化部署,采用国内开源大模型+多元多能小模型+煤炭知识图谱融合技术
✓地知一期:实现内外网可控智能问答、关键数据搜索推送等功能
✓地知二期:以《煤矿全生命周期地质保障系统》重大科技专项为核心,开发多模态、生成式智能应用
2023年8月,中航信移动科技有限公司
发布自主研发的“千穰”大模型
✓多应用场景:“千穰”融合了视觉大模型、语言大模型、多模态大模型和计算大模型,可在机坪、航站楼、旅客服务等多种应用场景下,满足民航运行、服务和监管需求
✓成功应用:航旅纵横App、多家民航主要机构
2024年8 月
中国石油发布 330 亿参数昆仑大模型
✓大模型训练方面,训练发布不同层次、不同类型、不同尺寸的 8 个大模型,以满足不同业务场景需求。
✓行业大模型方面,发布 130 亿参数、330 亿参数的语言大模型,以及 3 亿参数的视觉大模型,行业知识问答、概念理解、论文摘要生成、工业视觉理解等专业能力有效提升;
✓专业大模型方面,发布 50 亿参数地震解释和 1 亿参数测井处理解释两个具有专业特色的大模型,智能化应用取得明显成效;
✓场景大模型方面,发布 130 亿参数智能问数、3 亿参数设备识别、160 亿参数客户营销 3 个大模型,支撑智能运营问数、图文生成等业务需求
2024年4月,煤炭科学研究总院
发布自主研发的太阳石矿山大模型
✓太阳石矿山大模型针对煤矿多维度应用场景的具体需求,从基础设施、数据资源、算法模型、应用服务、安全可信与测试、行业生态6个层面进行建设
✓数据资源层汇聚了煤炭行业海量的多模态数据,包括安全监测数据集500亿条、视觉图像数据集300万张、专业学术期刊数据集等
2024年,北大荒信息有限公司
发布寒地作物大模型
✓该模型融合了北大荒集团数十年来积累的寒地种植数据、专家经验,并持续吸收各类新的农业大数据,从而形成覆盖种质资源、农艺栽培、病虫害防治等全方位的知识库,实现了对寒地作物生长环境的精准分析和预测
✓上线以来,寒地作物大模型在农业专家、集团内部人员和农场农户中的应用,获得了广泛好评和高度认可
03 30家央国企单位落地大模型清单
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。