在现代企业中,人工智能技术的应用越来越普遍,尤其是大模型的崛起。无论是提升员工效率,还是优化业务流程,AI都在发挥着越来越重要的作用。那么,企业该如何选择适合的AI大模型架构呢?是AI嵌入(Embedded)模式,AI副驾驶(Copilot)模式,还是AI代理(Agent)模式?
每种模式有不同的特点和应用场景,但如何判断哪一种最适合自己的企业?今天,我们将通过具体的案例来为您解答这些疑问,帮助您找到最合适的AI模式,让智能化升级不再是遥不可及的梦想。
一、AI Embedded模式——让智能无缝嵌入现有系统
1. 什么是AI Embedded模式?
AI Embedded模式指的是将人工智能技术嵌入现有的业务系统或产品中,作为一种增强工具,使得现有的工作流程变得更加智能化。在这种模式下,AI不单独存在,而是深度融入业务操作中,帮助企业优化流程、提升效率。
2. 实际案例:智能客服系统的嵌入
以某电商平台为例,平台将AI技术嵌入其客服系统中,通过自然语言处理(NLP)技术,AI能够自动识别顾客的咨询内容并进行智能回复。对于常见问题,系统能够实时给出答案,减轻了人工客服的工作压力,提升了客户服务效率。
3. 优势
-
低门槛,快速实现:不需要大规模改动现有系统,AI功能可快速嵌入并发挥作用。
-
流程优化,效率提升:AI的嵌入使得现有流程更加智能化,业务效率大幅提升。
-
易于维护,持续优化:AI功能作为增强工具,维护和升级相对容易。
4. 适用场景
-
数据分析与决策支持:实时分析大量数据,自动生成报告并提供决策建议。
-
客户服务:自动回复、智能客服等功能,提升用户体验。
二、AI Copilot模式——让AI成为你的“副驾驶”
1. 什么是AI Copilot模式?
AI Copilot模式是指AI系统作为辅助工具,与用户共同完成任务。在这个模式下,AI充当“副驾驶”的角色,为用户提供实时建议和支持,最终的决策权仍掌握在用户手中。
2. 实际案例:设计领域的AI Copilot
某设计公司采用AI Copilot模式来辅助设计师进行创作。AI通过分析过往设计作品和市场趋势,实时为设计师提供色彩搭配、布局设计、字体选择等方面的建议。设计师可以根据AI提供的灵感进行调整和改进,创作出更符合市场需求的作品。
3. 优势
-
增强用户能力:AI通过实时建议和支持,帮助用户快速提高工作效率。
-
灵活性高:用户可以根据实际情况选择是否采纳AI建议,灵活性更高。
-
良好的用户体验:AI系统通常具有简洁直观的交互界面,用户使用起来非常方便。
4. 适用场景
-
创意工作:如设计、写作等领域,AI Copilot可以提供灵感和创意建议。
-
技术支持:帮助技术人员快速定位问题并提供解决方案,提升问题解决效率。
三、AI Agent模式——完全自动化的“智能代理”
1. 什么是AI Agent模式?
AI Agent模式是指AI系统在一定范围内能够自主执行任务,做出决策,甚至不需要人工干预。与AI Copilot不同,AI Agent更像一个完全独立的工作“代理人”,能够自主完成指定的任务。
2. 实际案例:自动化交易系统
在金融领域,某金融机构利用AI Agent模式开发了自动化交易系统。这个系统能够自主分析市场趋势,执行高频交易操作,并根据市场波动调整交易策略,最大限度地降低人为失误,提高了交易的精度和效率。
3. 优势
-
高度自动化,减少人工干预:AI Agent能够独立执行任务,大幅提升自动化水平。
-
全天候运行:AI Agent可以24小时持续工作,确保业务不中断。
-
降低运营成本:通过自动化任务执行,企业能显著减少人工成本。
4. 适用场景
-
自动化交易:金融市场的高频交易、风险管理等。
-
自动化运维:IT系统的自主监控与故障修复,提升系统稳定性。
四、如何选择合适的大模型架构?
1. 业务需求分析
-
短期目标:如果企业希望快速提升现有系统的智能化水平,AI Embedded模式是理想选择,能快速投入使用并带来效益。
-
中长期目标:如果目标是依赖用户与AI的互动、逐步提升业务能力,AI Copilot模式更适合,尤其适用于需要长期优化的创意工作。
-
全面自动化:对于希望完全自动化操作、减少人工干预的企业,AI Agent模式无疑是最佳选择,能够极大提升业务效率。
2. 技术与资源评估
-
技术储备:如果企业拥有较强的技术研发能力,可以考虑AI Copilot或AI Agent模式;而技术储备较少时,AI Embedded模式将是更可行的选择。
-
资源配置:大规模的AI项目往往需要更多的资金和技术支持,企业需要根据自身资源情况做出选择。
3. 用户体验
-
用户接受度:AI的接受度直接影响模式的选择。AI Copilot模式适合那些愿意接受AI建议但仍保持决策权的用户。
-
交互需求:对于需要高交互性的业务,AI Copilot模式尤为适合;而对于需要高度自动化的场景,AI Agent模式则能提供更大的优势。
五、总结
无论是AI Embedded模式、AI Copilot模式还是AI Agent模式,每一种都有其独特的优势和应用场景。企业在选择时,应根据自身的业务需求、技术能力、资源状况以及用户体验等多方面因素进行综合评估。通过合理选择适合的大模型架构,企业不仅能够提升业务效率,还能实现智能化转型,增强竞争力。企业如何搭建适合自己的AI架构,将决定它们在未来竞争中的优势。选择合适的AI模式,是智能化转型的关键一步,让我们一起迎接AI带来的变革!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。