谷歌Agents白皮书:生成式 AI 智能体的深度剖析

在当今科技飞速发展的时代,人工智能领域不断涌现出新的概念和技术,其中生成式 AI 智能体(Agents)正逐渐成为备受瞩目的焦点。今天,我们将深入解读一份关于 Agents 的报告,带您全面了解其背后的奥秘。

智能体核心本质与架构剖析🔍

本质上,生成式 AI 智能体是一类高度智能的应用程序,它宛如一位自主探索者👣,能够敏锐地观察所处环境,并凭借自身配备的丰富工具,精准地采取行动,坚定不移地迈向预设目标🎯。以智能客服系统为例,它能在瞬间解析客户的复杂问题,自主决策从海量数据库中检索关键信息,进而迅速给出专业且贴心的解答,全程无需人工的持续介入与引导👍。

智能体的架构基石主要涵盖模型、工具与编排层。模型作为智能体的“智慧中枢”🧠,诸如遵循 ReAct、Chain-of-Thought 等先进推理框架的语言模型,具备强大的信息处理与决策能力,能够依据输入的各类信息迅速做出精准判断✔。工具则是智能体连接外部世界的关键“纽带”🔗,无论是通过 API 调用高效更新数据库资料,还是快速获取实时动态数据,都展现出其不可或缺的作用💪。而编排层恰似一位经验丰富的指挥官👨‍✈️,精心管理着智能体的信息流转、逻辑推理与行动规划流程,确保智能体在复杂多变的任务中始终保持高效与准确,稳步推进目标的达成🚶‍♂️。

智能体与传统模型的深度对比📊

智能体的强大工具生态系统🛠️

扩展(Extensions):智能 API 连接器🔌

在航班预订智能体的应用场景中,若需调用 Google Flights API 获取航班资讯,扩展功能便会大显身手✈️。它通过一系列精心设计的示例,悉心教导智能体如何精准调用 API 以及准确配置所需参数📝。在运行过程中,智能体依据自身模型的强大分析能力和丰富的示例经验,迅速筛选出适配用户需求的扩展方案🤝。相较于繁琐易错的自定义代码编写方式,扩展机制展现出卓越的扩展性与稳定性优势,能够从容应对用户千变万化的输入情况,确保信息获取的高效与准确👍。

函数(Functions):精细控制的利器⚙️

在旅游规划智能体的运作中,函数发挥着关键作用🌍。当用户提出个性化的旅游需求时,智能体利用函数巧妙生成结构严谨的城市推荐列表📄。与扩展有所不同,函数的独特之处在于模型输出函数及其参数后,后续的 API 调用执行环节交由客户端负责👨‍💻。这一特性为开发者赋予了更多精细化控制的权力,在面对诸如安全限制、特定数据转换需求等复杂场景时,函数调用能够游刃有余地满足多样化需求,确保整个流程的顺畅与高效✔。

数据存储(Data Stores):知识更新的源泉📚

对于企业内部文档管理智能体而言,数据存储是其获取最新信息的核心保障💾。它能够将各类文档巧妙转换为向量嵌入形式,智能体借助先进的向量搜索技术,快速精准地匹配用户查询与存储数据,从而获取极具价值的补充信息,有效弥补了模型知识仅局限于训练数据的固有缺陷,为生成高质量回答奠定坚实基础👍。

智能体性能提升与应用实战🚀

针对性学习策略赋能模型进化📈

  • 情境学习(In-context
    learning):在自然语言处理的复杂任务中,如智能文本创作与翻译📃,通过在推理瞬间提供针对性的提示、适配工具和典型少量示例,模型仿若一位快速学习的高手,能够迅速掌握在特定任务情境下工具的高效使用技巧,就像经验丰富的厨师在有限食材与信息中巧妙构思全新菜品🍳。

  • 基于检索的情境学习(Retrieval-based in-context
    learning):从外部海量存储中智能检索高度相关的信息、高效工具和优质示例,并动态填充至模型提示,如同厨师在食材宝库与丰富食谱中自由穿梭,极大地提升了回答的精准度、深度与丰富度🥘。

  • 微调学习(Fine-tuning based learning):在推理任务启动前,运用大规模特定领域示例对模型进行深度训练,使模型提前深度熟悉工具的各类应用场景与最佳实践,尤其适用于对专业领域精度要求极高的任务,如医疗诊断辅助与金融风险预测🏥。

应用实例展示创新实践成果🌟

  • LangChain 快速入门范例:借助 LangChain 和LangGraph 库精心打造的智能体,巧妙融合 SerpAPI 和Google Places API的强大功能,能够轻松应对诸如体育赛事资讯查询(如球队比赛赛程与场馆地址检索)等多阶段复杂查询任务⚽。这一实例生动展现了模型、编排层与工具紧密协作的高效机制,为开发者提供了宝贵的实践参考模板📋。

  • Vertex AI 智能体的企业级应用:Google 的 Vertex AI 平台为构建生产级智能体应用构筑了坚实的支撑框架🏗️。开发者借助其简洁直观的自然语言界面,便捷地定义智能体的关键要素,涵盖目标设定、任务指令规划、工具选型、子智能体任务分配与示例配置等方面,并充分利用平台提供的专业开发工具集,全方位开展测试、精准评估与深度优化工作,彻底摆脱了基础设施建设、部署运维等繁琐事务的困扰,得以全身心投入智能体的创新研发与性能提升💻。

生成式 AI 智能体正引领人工智能迈向全新的发展阶段,其蕴含的巨大潜力与创新活力令人瞩目🎉。随着技术的持续迭代升级,智能体必将在更多关键领域深度渗透,成为推动各行业数字化转型与创新发展的核心引擎🚀。让我们满怀期待,共同见证智能体在未来创造更为辉煌的成就,为人类社会的进步与发展注入源源不断的智慧动力💪。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值